858 resultados para Organic Carbon
Resumo:
This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.
Resumo:
Dissolved and particulate organic matter was measured during six cruises to the southern Ross Sea. The cruises were conducted during late austral winter to autumn from 1994 to 1997 and included coverage of various stages of the seasonal phytoplankton bloom. The data from the various years are compiled into a representative seasonal cycle in order to assess general patterns of dissolved organic matter (DOM) and particulate organic matter (POM) dynamics in the southern Ross Sea. Dissolved organic carbon (DOC) and particulate organic carbon (POC) were at background concentrations of approximately 42 and 3 µM C, respectively, during the late winter conditions in October. As the spring phytoplankton bloom progressed, organic matter increased, and by January DOC and POC reached as high as 30 and 107 µM C, respectively, in excess of initial wintertime conditions. Stocks and concentrations of DOC and POC returned to near background values by autumn (April). Approximately 90% of the accumulated organic matter was partitioned into POM, with modest net accumulation of DOM stocks despite large net organic matter production and the dominance of Phaeocystis antarctica. Changes in NO3 concentration from wintertime values were used to calculate the equivalent biological drawdown of dissolved inorganic carbon (DICequiv). The fraction of DICequiv drawdown resulting in net DOC production was relatively constant (ca. 11%), despite large temporal and spatial variability in DICequiv drawdown. The C : N (molar ratio) of the seasonally produced DOM had a geometric mean of 6.2 and was nitrogen-rich compared to background DOM. The DOM stocks that accumulate in excess of deep refractory background stocks are often referred to as "semi-labile" DOM. The "semi-labile" pool in the Ross Sea turns over on timescales of about 6 months. As a result of the modest net DOM production and its lability, the role DOM plays in export to the deep sea is small in this region.
Resumo:
Concentrations of total organic carbon (TOC) were determined on samples collected during six cruises in the northern Arabian Sea during the 1995 US JGOFS Arabian Sea Process Study. Total organic carbon concentrations and integrated stocks in the upper ocean varied both spatially and seasonally. Highest mixed-layer TOC concentrations (80-100 µM C) were observed near the coast when upwelling was not active, while upwelling tended to reduce local concentrations. In the open ocean, highest mixed-layer TOC concentrations (80-95 µM C) developed in winter (period of the NE Monsoon) and remained through mid summer (early to mid-SW Monsoon). Lowest open ocean mixed-layer concentrations (65-75 µM C) occurred late in the summer (late SW Monsoon) and during the Fall Intermonsoon period. The changes in TOC concentrations resulted in seasonal variations in mean TOC stocks (upper 150 m) of 1.5-2 mole C/m**2, with the lowest stocks found late in the summer during the SW Monsoon-Fall Intermonsoon transition. The seasonal accumulation of TOC north of 15°N was 31-41 x 10**12 g C, mostly taking place over the period of the NE Monsoon, and equivalent to 6-8% of annual primary production estimated for that region in the mid-1970s. A net TOC production rate of 12 mmole C/m**2/d over the period of the NE Monsoon represented ~80% of net community production. Net TOC production was nil during the SW Monsoon, so vertical export would have dominated the export terms over that period. Total organic carbon concentrations varied in vertical profiles with the vertical layering of the water masses, with the Persian Gulf Water TOC concentrations showing a clear signal. Deep water (>2000 m) TOC concentrations were uniform across the basin and over the period of the cruises, averaging 42.3±1.4 µM C.