487 resultados para Northeastern Tibetan Plateau
Resumo:
During Leg 194, a series of eight sites was drilled through Oligocene-Holocene mixed carbonate and siliciclastic sediments on the Marion Plateau, northeast Australia. The major objective was to constrain the magnitude and timing of sea level changes in the Miocene. Site 1193, located on the Marion Plateau in 348 m of water ~80 km from the south central Great Barrier Reef margin, is probably the most important site for constraining the major middle to late Miocene sea level drop and reconstructing the evolution history of the Marion Plateau during the Miocene (Isern, Anselmetti, Blum, et al., 2002, doi:10.2973/odp.proc.ir.194.2002). However, there is no biostratigraphic or other chronological data for the critical interval between 36 and 211 meters below seafloor (mbsf) (virtually the entire late and middle Miocene) due to poor core recovery and a virtual absence of planktonic microfossils in the core catcher samples examined aboard the ship (Isern, Anselmetti, Blum, et al., 2002, doi:10.2973/odp.proc.ir.194.2002). The main purpose of this report is to refine the shipboard nannofossil biostratigraphy through examination of new samples and more detailed examination of those samples reported on board the ship. This results in a refinement for most of the nannofossil datums and provides some useful age information to fill the critical data gap for the middle Miocene. Previous Neogene nannofossil biostratigraphic studies of the Marion Plateau and Queensland Plateau include Gartner et al. (1993, doi:10.2973/odp.proc.sr.133.213.1993) and Wei and Gartner (1993, doi:10.2973/odp.proc.sr.133.216.1993).
Resumo:
Benthic foraminifers were studied from lower Paleocene through upper Oligocene sections from Sites 747 and 748. The composition of the benthic foraminifer species suggests a middle to lower bathyal (600-2000 m) paleodepth during the Neogene and a probable upper abyssal (2000-3000 m) paleodepth during the Paleocene at Site 747. Site 748 is thought to have remained at middle to lower bathyal paleodepths throughout the Cenozoic. Principal component analysis distinguished four major benthic foraminifer assemblages: (1) a Paleocene Stensioina beccariiformis assemblage at Sites 747 and 748, (2) an early Eocene Nuttallides truempyi assemblage at lower bathyal Site 747, (3) an early through middle Eocene Stilostomella-Lenticulina assemblage at middle bathyal Site 748, and (4) a latest Eocene through Oligocene Cibicidoides-Astrononion pusillum assemblage at both sites. Major benthic foraminifer changes, as indicated by the principal components and first and last appearances, occurred at or close to the Paleocene/Eocene boundary, and in the late Eocene close to the middle/late Eocene boundary.
Resumo:
Although ponds make up roughly half of the total area of surface water in permafrost landscapes, their relevance to carbon dioxide emissions on a landscape scale has, to date, remained largely unknown. We have therefore investigated the inflows and outflows of dissolved organic and inorganic carbon from lakes, ponds, and outlets on Samoylov Island, in the Lena Delta of northeastern Siberia in September 2008, together with their carbon dioxide emissions. Outgassing of carbon dioxide (CO2) from these ponds and lakes, which cover 25% of Samoylov Island, was found to account for between 74 and 81% of the calculated net landscape-scale CO2 emissions of 0.2-1.1 g C/m**2/d during September 2008, of which 28-43% was from ponds and 27-46% from lakes. The lateral export of dissolved carbon was negligible compared to the gaseous emissions due to the small volumes of runoff. The concentrations of dissolved inorganic carbon in the ponds were found to triple during freezeback, highlighting their importance for temporary carbon storage between the time of carbon production and its emission as CO2. If ponds are ignored the total summer emissions of CO2-C from water bodies of the islands within the entire Lena Delta (0.7-1.3 Tg) are underestimated by between 35 and 62%.
Resumo:
Late Pleistocene intermediate water ventilation history in the northeastern Pacific has been inferred from benthic foraminiferal carbon isotopic data from seven California margin basins. Secular variations in oceanic d13C recorded at North Pacific ODP Site 849 were subtracted from each basin record leaving a residual d13C history that reflects variations in ventilation. During the previous interglacial intermediate waters above 2000m contained less oxygen than they do today or Pacific deep water at Site 849 was better ventilated. Intermediate water ventilation began to improve during oxygen isotope stage 4 and continued to improve throughout stages 3 and 2. This enhanced ventilation was not contemporaneous at all depths and appears to have progressed upwards through the water column. The diachronous nature of these changes suggest that there was not simply an "on"/"off" mechanism which resulted in higher or lower ventilation in the North Pacific during the last glacial cycle.
Resumo:
A new, high-resolution planktonic foraminiferal Mg/Ca-based ocean temperature record has been generated for deep sea core MD02-2496, sited offshore of Vancouver Island, Western Canada during the last deglaciation (21-12 ka). The relationship between Cordilleran Ice Sheet (CIS) retreat and changing regional ocean temperatures has been reconstructed through glaciomarine sediments in MD02-2496 that capture tidewater glacier response to surface ocean thermal forcing. At CIS maximum extent, the marine margin of the ice sheet advanced onto the continental shelf. During this interval, ocean temperatures recorded by surface ocean dwelling Globigerina bulloides remained a relatively constant ~7.5°C while subsurface dwelling Neogloboquadrina pachyderma (s.) recorded temperatures of ~5°C. These ocean temperatures were sufficiently warm to induce significant melt along the tidewater ice terminus similar to modern Alaskan tidewater glacial systems. During the deglacial retreat of the CIS, the N. pachyderma temperature record shows two distinct warming steps of ~2 and 2.5°C between 17.2-16 and 15.5-14 ka respectively, coincident with ice rafting events from the CIS, while G. bulloides records an ~3°C warming from 15 to14 ka. We hypothesize that submarine melting resulting from relatively warm ocean temperatures was an important process driving ice removal from CIS tidewater glaciers during the initial stages of deglaciation.
Resumo:
Twenty-four sediment samples from late Paleocene to early Eocene were studied for maceral content, vitrinite reflectance, and spectral fluorescence in order to determine some parameters of the origin and diagenetic history of their organic fraction. The sediments had been obtained at Site 555 of DSDP Leg 81 in the northeastern North Atlantic. The bulk of the microscopically visible fraction is made up of humic materials; inertinites follow as a distant second; and liptinites are exceedingly rare. No unequivocal evidence of marine organic matter was found. Humic materials are highly decomposed, showing signs of aerobic (frequency of sclerotinites) as well as anaerobic (abundance of and intimate association with framboidal pyrite) microbial degradation. Vitrinite reflectance values vary between 0.26 and 0.35 Ro and show a slight increase with depth. These values, indicative of a low-rank lignite stage of coalification, contrast somewhat with the sporinite fluorescence spectra, which show the configuration typical for the peat stage. In either case, the evidence for such a low stage of coalification is surprising in view of the depth and age of the sediments.
Resumo:
This study presents a new Miocene biostratigraphic synthesis for the high-latitude northeastern North Atlantic region. Via correlations to the bio-magnetostratigraphy and oxygen isotope records of Ocean Drilling Program and Deep Sea Drilling Project Sites, the ages of shallower North Sea deposits have been better constrained. The result has been an improved precision and documentation of the age designations of the existing North Sea foraminiferal zonal boundaries of King (1989) and Gradstein and Bäckström (1996). All calibrations have been updated to the Astronomically Tuned Neogene Time Scale (ATNTS) of Lourens et al. (2004). This improved Miocene biozonation has been achieved through: the updating of age calibrations for key microfossil bioevents, identification of new events, and integration of new biostratigraphic data from a foraminiferal analysis of commercial wells in the North Sea and Norwegian Sea. The new zonation has been successfully applied to two commercial wells and an onshore research borehole. At these high latitudes, where standard zonal markers are often absent, integration of microfossil groups significantly improves temporal resolution. The new zonation comprises 11 Nordic Miocene (NM) Zones with an average duration of 1 to 2 million years. This multi-group combination of a total of 92 bioevents (70 foraminifers and bolboformids; 16 dinoflagellate cysts and acritarchs; 6 marine diatoms) facilitates zonal identification throughout the Nordic Atlantic region. With the highest proportion of events being of calcareous walled microfossils, this zonation is primarily suited to micropaleontologists. A correlation of this Miocene biostratigraphy with a re-calibrated oxygen isotope record for DSDP Site 608 suggests a strong correlation between Miocene planktonic microfossil turnover rates and the inferred paleoclimatic trends. Benthic foraminifera zonal boundaries appear to often coincide with Miocene global sequence boundaries. The biostratigraphic record is punctuated by four main stratigraphic hiati which show variation in their geographic and temporal extent. These are related to the following regional unconformities: basal Neogene, Lower/Middle Miocene ("mid-Miocene unconformity"), basal Upper Miocene and basal Messinian unconformities. Further coring of Neogene sections in the North Sea and Norwegian Sea may better constrain their extent and their effect on the biostratigraphic record.
Resumo:
The evolution of planktonic foraminifera during the Late Cretaceous is marked in the Santonian by the disappearance of complex morphotypes (the marginotruncanids), and the contemporary increasing importance and diversification of another group of complex taxa, the globotruncanids. Upper Turonian to lower Campanian planktonic foraminiferal assemblages from Holes 762C and 763B (Ocean Drilling Program, Leg 122, Exmouth Plateau, 47°S palaeolatitude) were studied in detail to evaluate the compositional variations at the genus and species level based on the assumption that, in the Cretaceous oceans as in the modern, any faunal change was associated with changes in the characteristics and the degree of stability of the oceanic surface waters. Three major groups were recognised based on gross morphology, and following the assumption that Cretaceous planktonic foraminifera, although extinct, had life-history strategies comparable to those of modern planktonics: 1 - r-selected opportunists; 2 - k-selected specialists; 3 - r/k intermediate morphotypes which include all genera that display a range of trophic strategies in-between opportunist and specialist taxa. Although planktonic foraminiferal assemblages are characterised by a progressive appearance of complex taxa, this trend is discontinuous. Variation in number of species and specimens within genera has allowed recognition of five discrete intervals each of them reflecting different oceanic conditions based on fluctuations in diversity and abundance of the major morphotypes. Planktonic forms show cyclical fluctuations in diversity and abundance of cold (r-strategists) and warm taxa (k-strategists), perhaps representing alternating phases of unstable conditions (suggesting a weakly stratified upper water column in a mesotrophic environment), and well-stratified surface and near-surface waters (indicating a more oligotrophic environment). Interval 1, middle Turonian to early Coniacian in age, is dominated by the r/k intermediate morphotypes which alternate with r-strategists. These cyclical alternations are used to identify three additional subintervals. Interval 2, aged middle to late Coniacian, is characterised by the increasing number of species and relative abundance of k-strategists. After this maximum diversification the k-strategists show a progressive decrease reaching a minimum value in Interval 3 (early to late Santonian), which corresponds to the extinction of the genus Marginotruncana. In the Interval 4, latest Santonian in age, the k-strategists, represented mainly by the genera Globotruncana, increase again in diversity and abundance. The last Interval 5 (early Campanian) is dominated by juvenile globotruncanids and r-strategists which fluctuate in opposite phase. The positive peak (Interval 2) related to the maximum diversification of warm taxa (k-strategists) in the Coniacian seems to correspond to a warmer episode. It is followed by a marked decrease in the relative abundance of warm taxa (k-strategists crisis) with a minimum in the late Santonian (Interval 3), reflecting a decrease in temperature. Detailed analysis of faunal variations allows the Santonian faunal turnover to be ascribed to a cooling event strong enough to cause the extinction of the marginotruncanids.
Resumo:
The biostratigraphic distribution and abundance of Eocene to Pleistocene silicoflagellates is documented from Ocean Drilling Program Leg 120 Holes 747A, 748A, 748B, 749B, and 751A on the Central Kerguelen Plateau. Well-preserved silicoflagellates are reported here from the middle Eocene Dictyocha grandis Zone to the Pleistocene Distephanus speculum speculum Zone. Assemblage diversity and abundance is variable, with many intervals either barren of silicoflagellates or containing only limited numbers.
Resumo:
A planktonic foraminiferal zonal scheme is presented for subdivision of the Upper Cretaceous pelagic carbonate sequence from southern mid-high latitudes. Definition of the zones is based on first and last occurrences of planktonic foraminifera from Ocean Drilling Program Holes 762C and 763B (Leg 122; Exmouth Plateau, south Indian Ocean). During the Late Cretaceous the studied holes were located close to 50°S and for the first time a complete sedimentary record for the mid-high latitudes was obtained. A detailed biostratigraphic analysis has allowed recognition of two new zones (Falsotruncana maslakovae Zone and Marginotruncana marianosi Zone) for the interval extending from the last occurrence of Helvetoglobotruncana helvetica to the first occurrence of Dicarinella asymetrica (upper Turonian - lower Santonian). From this study it is apparent that some low latitude (Globotruncana ventricosa, Hedbergella flandrini, Marginotruncana marianosi) and high latitude (Globigerinelloides impensus and Hedbergella sliteri) marker taxa display a vertical distribution at mid-high latitudes which is different from that known from low latitudes; moreover, one species (Heterohelix papula), overlooked at low latitudes, exhibits a restricted range that seems to be useful for chrono-biostratigraphic correlations: its appearance is suggested to coincide with the Coniacian/Santonian boundary. The proposed biozonation, which is integrated with calcareous nannofossil and magnetostratigraphic data available for the sections studied, is compared with both the low-latitude standard zonation and the planktonic foraminiferal zonal scheme for the circum-Antarctic region, in order to define a bio-chronostratigraphic scale that is useful for mid-high latitudes of the southern oceans.
Resumo:
Marine biological productivity has been invoked as a possible climate driver during the early Paleogene through its potential influence on atmospheric carbon dioxide concentrations. However, the relationship of export productivity (the flux of organic carbon (C) from the surface ocean to the deep ocean) to organic C burial flux (the flux of organic C from the deep ocean that is buried in marine sediments) is not well understood. We examine the various components involved with atmosphere-to-ocean C transfer by reconstructing early Paleogene carbonate and silica production (using carbonate and silica mass accumulation rates (MARs)); export productivity (using biogenic barium (bio-Ba) MARs); organic C burial flux (using reactive phosphorus (P) MARs); redox conditions (using uranium and manganese contents); and the fraction of organic C buried relative to export productivity (using reactive P to bio-Ba ratios). Our investigations concentrate on Paleocene/Eocene sections of Sites 689/690 from Maud Rise and Site 738 from Kerguelen Plateau. In both regions, export productivity, organic C burial flux, and the fraction of organic C buried relative to export productivity decreased from the Paleocene/early Eocene to the middle Eocene. A shift is indicated from an early Paleogene two-gyre circulation in which nutrients were not efficiently recycled to the surface via upwelling in these regions, to a circulation more like the present day with efficient recycling of nutrients to the surface ocean. Export productivity was enhanced for Kerguelen Plateau relative to Maud Rise throughout the early Paleogene, possibly due to internal waves generated by the plateau regardless of gyre circulation.
Resumo:
During drilling at Sites 759, 760, and 761 of Leg 122 (Exmouth Plateau, northwest Australia), a thick section of Upper Triassic sediments was recovered. Paleomagnetic analyses were made on 398 samples from Holes 759B, 760A, 760B, and 761C. Progressive thermal demagnetization, alternating field demagnetization, or mixed treatment removed an initial unstable component and isolated a characteristic remanent magnetization which is of normal or reversed polarity. The magnetostratigraphic results allow us to propose a magnetic polarity sequence which extends from the upper Carnian to lower Rhaetian. This sequence reveals many more reversals than previously suggested from paleomagnetic studies. The magnetostratigraphic data also allow us to suggest correlations between Sites 759 and 760.