439 resultados para Nitrogen and phosphorous loading


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical composition of organic matter (Corg, Norg, d13C, d1SN, and n-alkanes) was studied in the top layer of bottom sediments of the East Siberian Sea. Possible ways were proposed to estimate the amount of the terrigenous component in their organic matter (OM). The fraction of terrigenous OM estimated by the combined use of genetic indicators varied from 15% in the eastern part of the sea, near the Long Strait, to 95% in the estuaries of the Indigirka and Kolyma rivers, averaging 62% over the sea area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of temperature and food availability on feeding and egg production of the Arctic copepod Calanus hyperboreus were investigated in Disko Bay, western Greenland, from winter to spring 2009. The abundance of females in the near bottom layer and the egg production of C. hyperboreus prior to the spring bloom document that reproduction relies on lipid stores. The maximum in situ egg production (± SE) of 54 ± 8 eggs female/d was recorded in mid-February at chlorophyll a concentrations below 0.1 µg/l, whereas no egg production was observed in mid-April when the spring bloom developed. After reproduction, the females migrated to the surface layer to exploit the bloom and refill their lipid stores. In 2 laboratory experiments, initiated before and during the spring bloom, mature females were kept with and without food at 5 different temperatures ranging from 0 to 10°C and the fecal pellet and egg production were monitored. Food had a clear effect on fecal pellet production but no effect on egg production, while temperature did not have an effect on egg or fecal pellet production in any of the experiments. Analyses of carbon and lipid content of the females before and after the experiments did not reflect any effect of food or temperature in the pre-bloom experiment, whereas in the bloom experiment a clear positive effect of food was detected in female biochemical profiles. The lack of a temperature response suggests a future warmer ocean could be unfavorable for C. hyperboreus compared to smaller Calanus spp. which are reported to exploit minor temperature elevations for increased egg production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the sensitivity of algae towards silver nanoparticles with OECD test medium and lower nutrient concentrations under standard test conditions to improve comparability and to exclude any other confounding factor aside nutrient levels. Two unicellular freshwater microalgae Desmodesmus subspicatus and Raphidocelis subcapitata were chosen due to their status as standard test organisms for the algae growth inhibition test and the response to changes in nutrient supply was compared. The original medium was used as the reference (standard). For the other four media, the amount of either nitrogen or phosphorus in the medium was lowered from half (50%) to one-fourth (25 %) of that of the OECD guideline, resulting in the following media: 50% N, 25% N, 50% P and 25% P medium. As test substance, the OECD reference material NM-300K was used. For this reason, the characterization of AgNP was done using DLS and Absorption spectra (UV/vis). Actual silver concentrations and ionic silver concentrations were measured at the highest test concentration used (100 µg Ag L-1) in R. subcapitata treatments only to reduce the number of samples. All tests were run according to the OECD guideline 201 with sterilized 50 mL cell culture flask. Each medium was tested using the test conditions for culturing with 3 replicates. Test concentrations for both algae species were 0, 25, 50 and 100 µg Ag L-1 for OECD, 50% P and 25% P while for both N reductions, the silver concentrations were 0, 10, 25 and 100 µg Ag L-1. Samples for determining the algal density were taken at every 24 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rising stable nitrogen isotope ratios (d15N) in dated sediment records of the German Bight/SE North Sea track river-induced coastal eutrophication over the last 2 centuries. Fully exploiting their potential for reconstructions of pristine conditions and quantitative analysis of historical changes in the nitrogen cycle from these sediment records requires knowledge on processes that alter the isotopic signal in non-living organic matter (OM) of sinking particles and sediments. In this study, we analyze the isotopic composition of particulate nitrogen (PN) in the water column during different seasons, in surface sediments, and in sediment cores to assess diagenetic influences on the isotopic composition of OM. Amino acid (AA) compositions of suspended matter, surface sediments, and dated cores at selected sites of the German Bight serve as indicators for quality and degradation state of PN. The d15N of PN in suspended matter had seasonal variances caused by two main nitrate sources (oceanic and river) and different stages of nitrate availability during phytoplankton assimilation. Elevated d15N values (> 20 per mil) in suspended matter near river mouths and the coast coincide with a coastal water mass receiving nitrate with elevated isotope signal (d15N > 10 per mil) derived from anthropogenic input. Particulate nitrogen at offshore sites fed by oceanic nitrate having a d15N between 5 and 6 per mil had low d15N values (< 2 per mil), indicative of an incipient phytoplankton bloom. Surface sediments along an offshore-onshore transect also reflect the gradient of low d15N of nitrate in offshore sites to high values near river mouths, but the range of values is smaller than between the end members listed above and integrates the annual d15N of detritus. Sediment cores from the coastal sector of the gradient show an increasing d15N trend (increase of 2.5 per mil) over the last 150 years. This is not related to any change in AA composition and thus reflects eutrophication. The d15N signals from before AD 1860 represent a good estimation of pre-industrial isotopic compositions with minimal diagenetic overprinting. Rising d13C in step with rising d15N in these cores is best explained by increasing productivity caused by eutrophication.