468 resultados para FINE PARTICULATE MATTER
Resumo:
A study was made of isotopic composition of carbon in lipids found in three samples of separate particulates and in eight bottom sediment samples collected in a from the Simushir Island towards the open Pacific Ocean. Average d13C of lipids from particulates was 2.3 per mil lower than one of sediments. Humic acids from sediments are the most isotopically heavy fraction (d13C = -21.2 per mil). Isotopic composition of carbon in lipids depended on their total content in samples and on composition of sediments. Formation of isotopically heavy lipids in the surface layer of sediments may be associated with biogeochemical resynthesis of humic acids.
Resumo:
The TEX86 paleotemperature proxy is based on archaeal glycerol dibiphytanyl glycerol tetraether (GDGT) lipids preserved in marine sediments, yet both the influence of different physiological factors on the structural distribution of GDGTs, and the mechanism(s) by which GDGTs are exported to marine sediments remain unclear. In particular, TEX86 temperatures derived directly from suspended particulate matter (SPM) in the water column can diverge strongly from corresponding in situ temperatures. Here we investigated the abundance and structural distribution of GDGTs in the South-west and Equatorial Atlantic Ocean by examining SPM collected from four surface 1000 m depth profiles spanning 48 degrees of latitude. The depth distribution of GDGTs was consistent with our current understanding of marine archaeal ecology, and specifically of ammonia-oxidizing Thaumarchaeota. Maximum GDGT concentrations occurred at the base of the primary NO2- maximum. Core GDGTs dominated the structural distribution in surface waters, while intact polar GDGTs - thought to potentially indicate live cells - were more abundant at all depths below the maximum NO2- concentration. When integrated through the upper 1000 m of the water column, > 98% of GDGTs were present in waters at and below the depth of the primary NO2- maximum. TEX86-calculated temperatures showed local minima at the depth of the NO2- maximum, while the ratio of GDGT 2:GDGT 3 [2/3] increased with depth throughout the upper water column. These results were used to model the depth of origin for GDGTs exported to sediments. By comparing our SPM data to published TEX86 values and [2/3] ratios from sediments near our study sites, we conclude that most GDGTs are exported from the depth of maximum GDGT concentrations, near the subsurface NO2- maximum (~80-250 m). This indicates that local ammonia oxidation dynamics are important regional controls on the GDGT ratios preserved in sediments. Predicting the extent to which subsurface variations in archaeal activity may influence the sedimentary TEX86 record will require a better understanding of how site-specific productivity and particle dynamics in the upper water column influence the depth of origin for exported organic matter.
Particulate matter and organic compounds in snow, ice, and water of the Lazarev and Cooperation Seas
Resumo:
Integrated studies of particulate matter and organic compounds in surface waters and the snow-ice cover by means of geochemical (concentrations of the particulate matter, Corg, hydrocarbons, lipids, and chlorophyll a) and optical techniques were performed in the Southern Ocean and in the East Atlantic Ocean along the vessel's route: Africa - Antarctica - Africa - St. Petersburg. Correlations between studied compounds were found. It was shown that supply of pollutants affects not only concentrations but also proportions of the considered compounds. New data were obtained on the processes of accumulation of particulate matter and organic compounds under ice formation.