760 resultados para Cores
Resumo:
Agricultural pesticide use has increased worldwide during the last several decades, but the long-term fate, storage, and transfer dynamics of pesticides in a changing environment are poorly understood. Many pesticides have been progressively banned, but in numerous cases, these molecules are stable and may persist in soils, sediments, and ice. Many studies have addressed the question of their possible remobilization as a result of global change. In this article, we present a retro-observation approach based on lake sediment records to monitor micropollutants and to evaluate the long-term succession and diffuse transfer of herbicides, fungicides, and insecticide treatments in a vineyard catchment in France. The sediment allows for a reliable reconstruction of past pesticide use through time, validated by the historical introduction, use, and banning of these organic and inorganic pesticides in local vineyards. Our results also revealed how changes in these practices affect storage conditions and, consequently, the pesticides' transfer dynamics. For example, the use of postemergence herbicides (glyphosate), which induce an increase in soil erosion, led to a release of a banned remnant pesticide (dichlorodiphenyltrichloroethane, DDT), which had been previously stored in vineyard soil, back into the environment. Management strategies of ecotoxicological risk would be well served by recognition of the diversity of compounds stored in various environmental sinks, such as agriculture soil, and their capability to become sources when environmental conditions change.
Resumo:
We present new high-resolution N isotope records from the Gulf of Tehuantepec and the Nicaragua Basin spanning the last 50-70 ka. The Tehuantepec site is situated within the core of the north subtropical denitrification zone while the Nicaragua site is at the southern boundary. The d15N record from Nicaragua shows an 'Antarctic' timing similar to denitrification changes observed off Peru-Chile but is radically different from the northern records. We attribute this to the leakage of isotopically heavy nitrate from the South Pacific oxygen minimum zone (OMZ) into the Nicaragua Basin. The Nicaragua record leads the other eastern tropical North Pacific (ETNP) records by about 1000 years because denitrification peaks in the eastern tropical South Pacific (ETSP) before denitrification starts to increase in the Northern Hemisphere OMZ, i.e., during warming episodes in Antarctica. We find that the influence of the heavy nitrate leakage from the ETSP is still noticeable, although attenuated, in the Gulf of Tehuantepec record, particularly at the end of the Heinrich events, and tends to alter the recording of millennial timescale denitrification changes in the ETNP. This implies (1) that sedimentary d15N records from the southern parts of the ETNP cannot be used straightforwardly as a proxy for local denitrification and (2) that denitrification history in the ETNP, like in the Arabian Sea, is synchronous with Greenland temperature changes. These observations reinforce the conclusion that on millennial timescales during the last ice age, denitrification in the ETNP is strongly influenced by climatic variations that originated in the high-latitude North Atlantic region, while commensurate changes in Southern Ocean hydrography more directly, and slightly earlier, affected oxygen concentrations in the ETSP. Furthermore, the d15N records imply ongoing physical communication across the equator in the shallow subsurface continuously over the last 50-70 ka.
Resumo:
The hydrogen isotopic composition of plant leaf-wax n-alkanes (dDwax) is a novel proxy for estimating dD of past precipitation (dDp). However, vegetation life-form and relative humidity exert secondary effects on dDwax, preventing quantitative estimates of past dDp. Here, we present an approach for removing the effect of vegetation-type and relative humidity from dDwax and thus for directly estimating past dDp. We test this approach on modern day (late Holocene; 0-3 ka) sediments from a transect of 9 marine cores spanning 21°N-23°S off the western coast of Africa. We estimate vegetation type (C3 tree versus C4 grass) using d13C of leaf-wax n-alkanes and correct dDwax for vegetation-type with previously-derived apparent fractionation factors for each vegetation type. Late Holocene vegetation-corrected dDwax (dDvc) displays a good fit with modern-day dDp, suggesting that the effects of vegetation type and relative humidity have both been removed and thus that dDvc is a good estimate of dDp. We find that the magnitude of the effect of C3 tree - C4 grass changes on dDwax is small compared to dDp changes. We go on to estimate dDvc for the mid-Holocene (6-8 ka), the Last Glacial Maximum (LGM; 19-23 ka) and Heinrich Stadial 1 (HS1; 16-18.5 ka). In terms of past hydrological changes, our leaf-wax based estimates of dDp mostly reflect changes in wet season intensity, which is complementary to estimates of wet season length based on leaf-wax d13C.
Monte Carlo average of stable carbon isotope ratio of atmospheric CO2 from three Antarctic ice cores
Resumo:
The stable carbon isotope ratio of atmospheric CO2 (d13Catm) is a key parameter in deciphering past carbon cycle changes. Here we present d13Catm data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in d13Catm during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the d13Catm evolution. During the Last Glacial Maximum, d13Catm and atmospheric CO2 concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then.
Resumo:
Angola Basin and Cape Basin (southeast Atlantic) surface sediments and sediment cores show that maxima in the abundance of taraxerol (relative to other land-derived lipids) covary with maxima in the relative abundance of pollen from the mangrove tree genus Rhizophora and that in the surface sediments offshore maxima in the relative abundance of taraxerol occur at latitudes with abundant coastal mangrove forests. Together with the observation that Rhizophora mangle and Rhizophora racemosa leaves are extraordinarily rich in taraxerol, this strongly indicates that taraxerol can be used as a lipid biomarker for mangrove input to the SE Atlantic. The proxy-environment relations for taraxerol and Rhizophora pollen down-core show that increased taraxerol and Rhizophora pollen abundances occur during transgressions and periods with a humid climate. These environmental changes modify the coastal erosion and sedimentation patterns, enhancing the extent of the mangrove ecosystem and/or the transport of mangrove organic matter offshore. Analyses of mid-Pleistocene sediments show that interruption of the pattern of taraxerol maxima during precession minima occurs almost only during periods of low obliquity. This demonstrates the complex environmental response of the interaction between precession-related humidity cycles and obliquity-related sea-level changes on mangrove input.
Resumo:
Greenland stadial/interstadial cycles are known to affect the North Atlantic's hydrography and overturning circulation and to cause ecological changes on land (e.g., vegetation). Hardly any information, directly expressed as diversity indices, however, exists on the impacts of these millennial-scale variations on the marine flora and fauna. We calculated three diversity indices (species richness, Shannon diversity index, Hurlbert's probability of interspecific encounter) for the planktonic foraminifer fauna found in 18 deep-sea cores covering a time span back to 60 ka. Clear differences in diversity response to the abrupt climate change can be observed and some records can be grouped accordingly. Core SO82-05 from the southern section of the subpolar gyre, the cores along the British margin and core MD04-2845 in the Bay of Biscay show two modes of diversity distribution, with reduced diversity (uneven fauna) during cold phases and the reverse (even fauna) during warm phases. Along the Iberian margin high species diversity prevailed throughout most of the glacial period. The exceptions were the Heinrich stadials when the fauna abruptly shifted from an even to an uneven or less even fauna. Diversity changes were often abrupt, but revealed a high resilience of the planktonic foraminifer faunas. The subtropical gyre waters seem to buffer the climatic effects of the Heinrich events and Greenland Stadials allowing for a quick recovery of the fauna after such an event. The current work clearly shows that planktonic foraminifer faunas quickly adapt to climate change, albeit with a reduced diversity.