524 resultados para Cold vapor atomic florescence spectrometry
Resumo:
Studies of interstitial waters obtained from DSDP Leg 64 drill sites in the Gulf of California have revealed information both on early diagenetic processes in the sediments resulting from the breakdown of organic matter and on hydrothermal interactions between sediments and hot doleritic sill intrusions into the sediments. In all the sites drilled sulfate reduction occurred as a result of rapid sediment accumulation rates and of relatively high organic carbon contents; in most sites methane production occurred after sulfate depletion. Associated with this methane production are high values of alkalinity and high concentrations of dissolved ammonia, which causes ion exchange processes with the solid phases leading to intermediate maxima in Mg++, K+, Rb+, and Sr++(?). Though this phenomenon is common in Leg 64 drill sites, these concentration reversals had been noticed previously only in Site 262 (Timor Trough) and Site 440 (Japan Trench). Penetrating, hot dolerite sills have led to substantial hydrothermal alteration in sediments at sites drilled in the Guaymas Basin. Site 477 is an active hydrothermal system in which the pore-water chemistry typically shows depletions in sulfate and magnesium and large increases in lithium, potassium, rubidium, calcium, strontium, and chloride. Strontium isotope data also indicate large contributions of volcanic matter and basalt to the pore-water strontium concentrations. At Sites 478 and 481 dolerite sill intrusions have cooled to ambient temperatures but interstitial water concentrations of Li+, Rb+, Sr++ , and Cl- show the gradual decay of a hydrothermal signal that must have been similar to the interstitial water chemistry at Site 477 at the time of sill intrusion. Studies of oxygen isotopes of the interstitial waters at Site 481 indicate positive values of d18O (SMOW) as a result of high-temperature alteration reactions occurring in the sills and the surrounding sediments. A minimum in dissolved chloride at about 100-125 meters sub-bottom at Sites 478, 481, and particularly Site 479 records a possible paleosalinity signal, associated with an event that substantially lowered salinities in the inner parts of the Gulf of California during Quaternary time.
Resumo:
Manganese contents in reduced sediments and accumulation rates were investigated. Their values in sediments of most of cores are background (0.03-0.07 %).Anomalous concentrations (up to 2.5 %) and accumulation rates (up to 60 mg/cm**2/ka) occur near the known region of hydrothermal barite mineralization in the Derugin Basin. High accumulation rates of Mn (>10 mg/cm**2/ka) also occur in Holocene sediments to south-east from the Derugin Basin. It can be assumed that high Mn contents and accumulation rates occur there due to transportation of Mn-rich water from the Derugin Basin in the near-bottom layer under the lower border of the Sea of Okhotsk Intermediate Water. Intensive Mn accumulation is also typical for the South Okhotsk Basin near the Bussol Strait. Mn accumulation rates of glacial sediments of the second oxygen isotope stage are less significant, which is presumed to be caused by paleoceanological reasons.
Resumo:
At the Western Nankai Trough subduction zone at ODP Site 808, chemical concentration and isotopic ratio depth profiles of D, O, Sr, and He do not support fluid flow along the décollement nor at the frontal thrust. They do, however, support continuous or periodic lateral fluid flow: (1) at the base of the Shikoku Basin volcanic-rich sediment member, situated ~140 m above the décollement, and particularly (2) below the décollement. The latter must have been rather vigorous, as it was capable of transporting clay minerals over great distances. The fluid at ~140 m above the décollement is characterized by lower than seawater concentrations of Cl- (>=18% seawater dilution). It is 18O-rich and D-poor and has a non-radiogenic, oceanic, or volcanic arc Sr isotopic signature. It originates from "volcanic" clay diagenesis. The fluid below the décollement has also less Cl- than seawater (>20% dilution), is more enriched in 18O and depleted in D than fluid, but its Sr isotopic signature is radiogenic, continentalterrigenous. The source of this fluid is located arcward, is deep-seated, where illitization of the subducted clay minerals, a mixture of terrigenous and volcanic clays, occurs. The 3He/4He ratio below the décollement points to an ~25% mantle contribution. The nature of the physical and chemical discontinuities across the décollement suggests it is overpressured and is forming a leaky "dynamic seal" for fluid flow. In contrast with the situation at Barbados and Peru, where the major tectonic features are mineralized, here, although the complex is extremely fractured and faulted, mineralized macroscopic veins, fractures, and faults are absent. Instead, mineralized microstructures are widespread, indicating a diffuse mode of dewatering.
Resumo:
Concentrations of Fe, Mg, Ca, Sr, Mn, Zn, and other heavy metals were analyzed by atomic absorption spectrometry in 27 chert samples from the Pacific deep sea, 17 chert samples from land, and 4 associated sediments from the Pacific Ocean. Among the elements, Fe and Mg concentrations are highly correlatable as are the relationships between Ca and Sr, or between Ca and CO2. The correlation between Fe and Mg is particularly high for Pacific deep-sea flints and cherts, and for cherts of deep-sea origin from outcrops on land. Enrichments in heavy metals were recognized in some deep-sea cherts; volcanogenic cherts are enriched in Fe, a chert nodule containing basaltic fragments is enriched in Zn and Cr, and biogenically enclosed carbonates in flint nodules are enriched in Mn. The correlation of Fe and Mg and their constant ratio [Mg(%)/Fe(%)] of around 0.33 might be characteristic features in the pelagic clays contained in deep-sea flints and cherts, and the concentrations of heavy metals in them would be controlled by the concentrations of Fe-Mg correlated clays. Although the mineralogical nature of the Fe-Mg clay in deep-sea cherts was not clarified by dissolution experiments on opaline minerals in chert, the high concentrations of Fe-montmorillonite and fine-grained olivine or other ferromagnesian silicate minerals in the clay may result in the high correlations between Fe and Mg.
Resumo:
A study of composition of biomarkers (lignin and phenols) in aerosols and bottom sediments from the Tropical North Atlantic was carried out. It was shown that organic matter of aerosols was mostly composed of products of terrestrial plants (arboreal fibers, pollen, and spores). Biomarker composition in the aerosols and in the bottom sediments was practically similar, which proved delivery of terrigenous organic matter to the ocean via the atmosphere.
Resumo:
New data on chemical and trace component compositions of acidic and low acidic swamp waters and other types of low mineralized waters are reported in the paper. Special attention is paid to dissolved organic compounds: fulvic and humic acids, bitumen, and hydrocarbons. For the first time detailed data on organic trace components (alkanes, pentacyclic terpenoids, steranes, alkylbenzenes, naphthalenes, phenanthrenes, tetraarenes, etc.) in the swamp waters of the Western Siberia: are reported.
Resumo:
In the monograph metalliferous sediments of the East Pacific Rise near 21°S are under consideration. Distribution trends of chemical, mineral and grain size compositions of metalliferous sediments accumulated near the axis of this ultrafast spreading segment of the EPR are shown. On the basis of lithological and geochemical investigations spatial and temporal variations of hydrothermal activity are estimated. Migration rates of hydrothermal fields along the spreading axis are calculated. The model of cyclic hydrothermal process is suggested as a result of tectono-magmatic development of the spreding centre.