323 resultados para Classification and description of nets


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of textural, structural, chemical, and physical properties of fine-grained recent marine sediments leads to the conclusion that only a few compositional factors are responsible for significant changes in mass physical characteristics in the upper meters below sea bottom. Fossil-induced porosity increases water content and liquid limit. It also seems to have partially influenced the plastic limit and plasticity index of calcareous sandy silts from the Red Sea and the western Gulf of Aden so that they become similar to the montmorillonite rich prodelta clays from the Nile Delta. Diagrams based on liquid limit and plasticity loose their original meaning in these cases. Activity of sediments rich in microorganisms can be higher than that of montmorillonitic clay. The shear strength-depth relationship of normally consolidated sediments is surprisingly little influenced by changes in sand or clay content and clay mineralogy. Only high lime content, submarine erosion and beginning cementation increase the strength considerably. Erosional disconformities near the present surface can be deduced from the strength-depth curve when as little as 1 or 2 m sediment have been removed. Flat or irregular strength-depth curves indicate beginning cementation and probably discontinuous sedimentation, provided the composition of the material remains in some degree constant. In our samples diagenetic pyrite, but no recristallisation of carbonates could be detected under the microscope. Underconsolidation and excess pore-water pressure, factors which tend to foster submarine slides, mud lumps, and diapiric folding, seem to be restricted Varito areas with mainly rapidly deposited, homogeneous or layered sediments. But where an abundance of burrowing organisms increases the vertical permeability of the sediment, normal consolidation and stable deposits are to be expected, at least in the upper meters below the present surface. According to 14C-determinations on calcareous microorganisms the rate of deposition of the investigated sediments seems to range from 26 to 167 cm per 1000 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petrographical and mineral chemistry data are described for the mist representative basement lithologies occurring as clasts (pebble grain-size class) from the CRP-1 drillhole. Most pebbles consits of either undeformed or foliated biotite with or without hornblende monzogranites. Other rock types include biotite with or without garnet syenogranitr, biotite-hornblende granodiorite, tonalite, monzogranitic porphyries, haplogranite, quartz-monzonite (restricted to the Quaternary section), Ca-silicate rocks and biotite amphibolite (restricted to the Miocene strata). The common and ubiquitous occurence of biotite with or without hornblende monzogranite pebbles, in both the Quaternary and Miocene sections, apparently mirrors the dominance of these rock types in the granitoid assemblages which are presently exposed in the upper Precambrian-lower Paleozoic basement of the south Victoria Land. The other CRP-1 pebble lithologies show petrographical features which consitently support a dominant supply from areas of the Transantarctic Mountains located to the west and south-west of the CRP-1 site, and they thus furthercorroborate a model of local provenance for the supply of basement clasts to the CRP-1 sedimentary strata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cape Roberts Project drillcore 1 was obtained from Roberts Ridge, a sea-floor high located at 77°S, 16 km offshore from Cape Roberts in western McMurdo Sound, Antarctica. The recovered core is about 147 m long with the upper 43.15 metres below the sea floor (revised figure) being dated as Quarternary and the older part of the sequence being Miocene. The core includes nine facies: sandy diamict, muddy diamict, gravel/conglomerate, mud(stone), clay(stone) and carbonate. These facies occure in associations that are repeated in particulare sequences throughout the core, and are interpreted as representing different depositional environments through time. Seven lithofacies associations are interpreted as representing offshore shelf, ice protected/below wave-base; prodeltaic/offshore shelf; delta front/sandy shelf; ice system; subglacial till/rainout diamict/debris flow diamicts singly or in combination; and a carbonate-rich shelf bank. The facies associations are used to infer that the Quaternary section represents deposition on a polar shelf with perhaps two or three glacial fluctuations. The Quaternary carbonate unit indicates a period of ice sheet retreat, but local glacial activity may have increased with an increase in costal precipitation. The Miocene section represents polythermal glacial systems. The older Miocene section is glacially dominated whereas the younger section is much less so. The glacially dominated section may provide evidence for a major glacial advance thar resulted un a low stand of global eustatic sea level at that time. After the low stand, eustatic sea level was gradually rising during deposition of the younger section dominated more by non-glacial processes.