325 resultados para CAL BP
Resumo:
To better understand Holocene vegetation and hydrological changes in South Africa, we analyzed pollen and microcharcoal records of two marine sites GeoB8331 and GeoB8323 from the Namaqualand mudbelt offshore the west coast of South Africa covering the last 9900 and 2200 years, respectively. Our data corroborate findings from literature that climate developments apparently contrast between the summer rainfall zone (SRZ) and winter rainfall zone (WRZ) over the last 9900 years, especially during the early and middle Holocene. During the early Holocene (9900-7800 cal.yr BP), a minimum of grass pollen suggests low summer rainfall in the SRZ, and the initial presence of Renosterveld vegetation indicates relatively wet conditions in the WRZ. Towards the middle Holocene (7800-2400 cal. yr BP), a rather moist savanna/grassland rich in grasses suggests higher summer rainfall in the SRZ resulting from increased austral summer insolation and a decline of fynbos vegetation accompanied by an increasing Succulent Karoo vegetation in the WRZ possibly suggests a southward shift of the Southern Hemisphere westerlies. During the last 2200 years, a trend towards higher aridity was observed for the SRZ, while the climate in the WRZ remained relatively stable. The Little Ice Age (ca. 700-200 cal. yr BP) was rather cool in both rainfall zones and drier in the SRZ while wetter in the WRZ.
Resumo:
Recent palaeoglaciological studies on the West Antarctic shelf have mainly focused on the wide embayments of the Ross and Amundsen seas in order to reconstruct the extent and subsequent retreat of the West Antarctic Ice Sheet (WAIS) since the Last Glacial Maximum (LGM). However, the narrower shelf sectors between these two major embayments have remained largely unstudied in previous geological investigations despite them covering extensive areas of the West Antarctic shelf. Here, we present the first systematic marine geological and geophysical survey of a shelf sector offshore from the Hobbs Coast. It is dominated by a large grounding zone wedge (GZW), which fills the base of a palaeo-ice stream trough on the inner shelf and marks a phase of stabilization of the grounding line during general WAIS retreat following the last maximum ice-sheet extent in this particular area (referred to as the Local Last Glacial Maximum, 'LLGM'). Reliable age determination on calcareous microfossils from the infill of a subglacial meltwater channel eroded into the GZW reveals that grounded ice had retreated landward of the GZW before ~20.88 cal. ka BP, with deglaciation of the innermost shelf occurring prior to ~12.97 cal. ka BP. Geophysical sub-bottom information from the inner-, mid- and outer shelf indicates grounded ice extended to the shelf edge prior to the formation of the GZW. Assuming the wedge was deposited during deglaciation, we infer the timing of maximum grounded ice extent occurred before ~20.88 cal. ka BP. This could suggest that the WAIS retreat from the outer shelf was already underway during or even prior to the global LGM (~23-19 cal. ka BP). Our new findings give insights into the regional deglacial behaviour of this understudied part of the West Antarctic shelf and at the same time support early deglaciation ages recently presented for adjacent drainage sectors of the WAIS. If correct, these findings contrast with the hypothesis that initial deglaciation of Antarctic Ice Sheets occurred synchronously at ~19 cal. ka BP.
Resumo:
We reconstruct the geometry and strength of the Atlantic Meridional Overturning Circulation during Heinrich Stadial 2 and three Greenland interstadials of the 20-50 ka period based on the comparison of new and published sedimentary 231Pa/230Th data with simulated sedimentary 231Pa/230Th. We show that the deep Atlantic circulation during these interstadials was very different from that of the Holocene. Northern-sourced waters likely circulated above 2500 m depth, with a flow rate lower than that of the present day North Atlantic Deep Water (NADW). Southern-sourced deep waters most probably flowed northwards below 4000 m depth into the North Atlantic basin, and then southwards as a return flow between 2500 and 4000 m depth. The flow rate of this southern-sourced deep water was likely larger than that of the modern Antarctic Bottom Water (AABW). Our results further show that during Heinrich Stadial 2, the deep Atlantic was probably directly affected by a southern-sourced water mass below 2500 m depth, while a slow southward flowing water mass originating from the North Atlantic likely influenced depths between 1500 and 2500 m down to the equator.
Resumo:
Aim: Concepts about patterns and rates of post-glacial tree population migration are changing as a result of the increasing amount of palaeobotanical information being provided by macroscopic plant remains. Here we combine macrofossil, pollen and stomata records from five sites in north-eastern European Russia and summarize the results for the late-glacial-early Holocene transition. The late-glacial-early Holocene transition encompasses the first indications of trees (tree-type Betula, Picea abies, Abies sibirica and Larix sibirica) and subsequent forest development. Considerable time-lags between the first macrobotanical and/or stomata finds of spruce (Picea abies) and the establishment of a closed forest are reconsidered. Location: Pechora basin, north-eastern European Russia. Methods: We used plant macrofossil, stomata, pollen and radiocarbon analyses to reconstruct late-glacial and early Holocene tree establishment and forest development. The data were derived from lake sediment and peat archives. Results: Palaeobotanical data reveal an early Holocene presence (11,500-10,000 cal. yr bp) of arboreal taxa at all five sites. One site presently located in the northernmost taiga zone, shows the presence of spruce and reproducing tree birch during the late-glacial. Given the current view of post-glacial population dynamics and migration rates, it seems likely that the source area of these early tree populations in north-eastern European Russia was not located in southern Europe but that these populations had local origins. Results thus support the emerging view that the first post-glacial population expansions in non-glaciated regions at high latitudes do not reflect migration from the south but were a result of an increase in the size and density of small persisting outlying tree populations. Main conclusions: Results suggest that the area east of the margin of the Scandinavian ice sheet to the Ural Mountains had isolated patches of trees during the late-glacial and early Holocene and that these small populations acted as initial nuclei for population expansion and forest development in the early Holocene.
Resumo:
Decadal to sub-decadal variability of inflow, evaporation and biological productivity derived from Lake Nam Co was used to reconstruct hydrological changes for the past ca. 24 k cal a BP. The timing of these variations corresponds to known climatic shifts on the Northern Hemisphere. After a dry and cold Last Glacial Maximum the lake level of Nam Co initially rose at ca. 20 k cal a BP. Moist but further cold conditions between ca. 16.2 and 14 k cal a BP correspond to Heinrich Event 1. A warm and moist phase between ca. 14 and 13 k cal a BP is expressed as a massive enhancement in inflow and biological productivity and might be associated with a first intensification of the Indian Ocean Summer Monsoon coinciding with the Bølling-Allerød complex. A twostep decrease in inflow and a contemporaneous decline in biological productivity until ca. 11.8 k cal a BP points to cool and dry conditions during the Younger Dryas. Lake levels peak at ca. 9.4 k cal a BP, although hydrological conditions remain relatively stable during the Holocene with only low-amplitude variations observed.
Resumo:
A record of Pb isotopic compositions and Pb and Ba concentrations are presented for the EPICA Dome C ice core covering the past 220 ky, indicating the characteristics of dust and volcanic Pb deposition in central East Antarctica. Lead isotopic compositions are also reported in a suite of soil and loess samples from the Southern Hemisphere (Australia, Southern Africa, Southern South America, New Zealand, Antarctica) in order to evaluate the provenance of dust present in Antarctic ice. Lead isotopic compositions in Dome C ice support the contention that Southern South America was an important source of dust in Antarctica during the last two glacial maxima, and furthermore suggest occasional dust contributions from local Antarctic sources. The isotopic signature of Pb in Antarctic ice is altered by the presence of volcanic Pb, inhibiting the evaluation of glacial-interglacial changes in dust sources and the evaluation of Australia as a source of dust to Antarctica. Consequently, an accurate evaluation of the predominant source(s) of Antarctic dust can only be obtained from glacial maxima, when dust-Pb concentrations were greatest. These data confirm that volcanic Pb is present throughout Antarctica and is emitted in a physical phase that is free from Ba, while dust Pb is transported within a matrix containing Ba and other crustal elements.
Resumo:
Within a larger program research work is being done on the history of settlement and landscape of the 'Siedlungskammer' Flögeln and the adjacent area. The 'Siedlungskammer' consists of an isolated pleistocene sand ground (Geest-island) surroundet by bogs. Starting from the edge of the Geest, near which large-scale archaeological excavations are carried out, three raised bog profiles were taken at 300, 500 and 4000 m off the prehistoric settlement. They were investigated by means of pollen analysis, and reflect in a decreasing way the activities of man on the Geestisland. Another pollen diagram from the nearby fen peat was worked out for comparison. At the same time it helped to date back a prehistoric sand path to the Roman period. The pollen diagrams cover the vegetational history without gaps from the early Atlantic period to modern times. The vegetation was decisively determined by the poor soils of this area. T'he pollen diagrams give evidence of the activity of settlers since the Neolithic age, with some gaps in the beginning, but later continuously from the middle of the Bronze age until the early migration period. The influence of the nearby settlement, which existed from the Birth of Christ to the 4/5th century, comes out distinctly. Among the cereals which were then cultivated here, there also was rye, at least in the 4/5th century, but most probably already during the Roman period. Besides that people cultivated barley, oats, and flax. The settlement break during the so-called dark ages between the 4/5th century and the time about 800 A.D. was confirmed by pollen analysis. During this time the area was once more covered by forests. The fluctuations of man's activities during the late Middle Ages and modern times, as they are made visible by pollen analysis, correspond to historically wellknown developments.
Resumo:
Climatic and oceanographic changes, as occurring at a glacial-interglacial scale, may alter the environmental conditions needed for the development of prolific cold-water coral reefs and mounds. Studies constraining the temporal distribution of cold-water corals in the NE Atlantic suggested the cyclic changes of the Atlantic Meridional Overturning Circulation as the main driver for the development and dispersal of cold-water coral ecosystems. However, conclusions were hindered by lack of data from the NW Atlantic. Aiming to overcome this lack of data, the temporal occurrence of cold-water corals in the Cape Lookout area along the southeastern US margin was explored by U-series dating. Furthermore, the local influence of the regional water masses, namely the Gulf Stream, on cold-water coral proliferation and occurrence since the Last Glacial Maximum was examined. Results suggest that the occurrence of cold-water corals in the Cape Lookout area is restricted to interglacial periods, with corals being present during the last ~7 kyr and also during the Eemian (~125 ka). The reconstructed local environmental conditions suggest an offshore displacement of the Gulf Stream and increased influence from the Mid-Atlantic Bight shelf waters during the last glacial period. During the deglacial sea level rise, the Gulf Stream moved coastward providing present-day-like conditions to the surface waters. Nevertheless, present-day conditions at the ocean sea floor were not established before 7.5 cal ka BP once the ultimate demise of the Laurentide ice-sheet caused the final sea level rise and the displacement of the Gulf Stream to its present location. Occasional presence of the Gulf Stream over the site during the Mid- to Late Holocene coincides with enhanced bottom current strength and a slightly higher bottom water temperature, which are environmental conditions that are favorable for cold-water coral growth.
Resumo:
Detrending natural and anthropogenic components of climate variability is arguably an issue of utmost importance to society. To accomplish this issue, one must rely on a comprehensive understanding of the natural variability of the climate system on a regional level. Here we explore how different proxies (e.g., stalagmite oxygen isotopic composition, pollen percentages, bulk sediment elemental ratios) record Holocene precipitation variability over southeastern South America. We found a general good agreement between the different records both on orbital and centennial time-scales. Dry mid Holocene, and wet late Holocene, Younger Dryas and a period between ~9.4 and 8.12 cal kyr BP seem to be pervasive features. Moreover, we show that proxy-specific sensitivity can greatly improve past precipitation reconstructions.
Resumo:
Understanding the response of the Antarctic ice sheets during the rapid climatic change that accompanied the last deglaciation has implications for establishing the susceptibility of these regions to future 21st Century warming. A unique diatom d18O record derived from a high-resolution deglacial seasonally laminated core section off the west Antarctic Peninsula (WAP) is presented here. By extracting and analysing single species samples from individual laminae, season-specific isotope records were separately generated to show changes in glacial discharge to the coastal margin during spring and summer months. As well as documenting significant intra-annual seasonal variability during the deglaciation, with increased discharge occurring in summer relative to spring, further intra-seasonal variations are apparent between individual taxa linked to the environment that individual diatom species live in. Whilst deglacial d18O are typically lower than those for the Holocene, indicating glacial discharge to the core site peaked at this time, inter-annual and inter-seasonal alternations in excess of 3 per mil suggest significant variability in the magnitude of these inputs. These deglacial variations in glacial discharge are considerably greater than those seen in the modern day water column and would have altered both the supply of oceanic warmth to the WAP as well as regional marine/atmospheric interactions. In constraining changes in glacial discharge over the last deglaciation, the records provide a future framework for investigating links between annually resolved records of glacial dynamics and ocean/climate variability along the WAP.