515 resultados para Anomalies of surface temperature
Resumo:
Distribution of planktonic foraminiferal tests was studied in 15 Upper Quaternary sediment cores from the continental slope of Africa, the Canary and Cape Verde basins, and slopes of the Mid-Atlantic Ridge. In all the cores substantial variations were found in relationship between foraminiferal planktonic species reflecting fluctuations of mean annual temperatures of surface waters. Temperature difference in temperatures between present time and that of the maximum of the stadial of the last continental glaciation glacial stadial (about 18,000 yrs ago) ranges from 8.5°C in the Canary upwelling region to minimum values of 2.0°C in the central part of the ocean, i.e. the southern part of the subtropical gyre. Temperature difference the Holocene optimum and 18,000 yrs ago ranges from 10°C to 3°C. Age estimates are supported by radiocarbon dates.
Resumo:
During the "Meteor"-Expedition to the Persian Gulf in March-May 1965, approximately 300 samples were collected. Most of them have been already studied by various authors in sedimentological as well as micropaleontological respects. 49 samples were selected for ostracode studies. These samples are arranged to form a long-axis section ("Laengsprofil"), and 4 shorter cross-profiles, perpendicular to the long-axis profile in the Persian Gulf and Gulf of Oman. 52 species of ostracodes in this area were specifically determined; 39 of them are described under open nomenclature. 13 species are already known from surrounding sea areas: 2 species from the Red Sea; 2 species from the east coast of Africa; 1 species from the Mediterranean Sea; and others from the Indian and Pacific Oceans. 12 species show close relationships to species from the Indopacific Ocean. The ostracode species found in the area can be grouped after the method of BRAUN-BLANQUT into 2 bioassociations. Association 1 with the following 4 characteristic species : Cytherella cf. pulchra, Loxoconcha sp. A, Neomonoceratina sp. A, Alocopocythere reticulata. Association 2 with 1 characteristic species: Ruggieria (Ruggieria) sp. B. The association 1 is widespread in the entire studied area of the Persian Gulf, where it is considered to characterize the shallow water region down to 200 m. The association 2 is restricted to the deeper water below 200 m of the inner part of the Oman Gulf. Only a few species known from the shallow water association of the Persian Gulf are present. Within the two ostracode associations mentioned above 4 zones from the total studied area could be related to the water depth. The zones A-D are characterized more or less readily by the relative abundance of certain species: Zone A : 7-30 m depth, on substrates of poorly coarse-grained clayey marl; Zone B: 30-94 m depth, on substrates of richly coarse-grained calcareous marl; Zone C: 94-1961208 m depth, on substrates of richly coarse-grained calcareous marl; Zone D: 196/208-500 m depth, on substrates of calcareous clay, poor in benthos. The regional and bathymetric distribution of the ostracode fauna in the area studied was compared in relation to 10 environmental factors: water depth, temperature, salinity, water density, O2-concentration, phosphate-silica contents, pH-values, stratification of the water body, water currents and type of sediments. The major environmental factors which appear to control the ostracode distribution are water depth (as a complex factor), O2-concentration and the type of sediment. At 3 stations (GIK01058, GIK01074 and GIK01204) species of the shallow water association were found together with a few bathyal species. These stations are situated at the outer Biaban shelf, in an area where the bottom water of the Persian Gulf flows down the slope towards the Oman Gulf. Several samples of the Zone B in the major part of the Persian Gulf show also a high species diversity containing a high percentage of subfossil ostracode carapaces. It is probable that the recent biocoenosis has been mixed with a late quarternary thanatocoenosis.
Resumo:
High resolution reconstructions of sea surface temperature (Uk'37-SST), coccolithophore associations and continental input (total organic carbon, higher plant n-alkanes, n-alkan-1-ols) in core D13882 from the shallow Tagus mud patch are compared to SST records from deep-sea core MD03-2699 and other western Iberian Margin cores. Results reveal millennial-scale climate variability over the last deglaciation, in particular during the LGIT. In the Iberian margin, Heinrich event 1 (H1) and the Younger Dryas (YD) represent two extreme episodes of cold sea surface condition separated by a marine warm phase that coincides with the Bølling-Allerød interval (B-A) on the neighboring continent. Following the YD event, an abrupt sea surface warming marks the beginning of the Holocene in this region. SSTs recorded in core D13882 changed, however, faster than those at deep-sea site MD03-2699 and at the other available palaeoclimate sequences from the region. While the SST values from most deep-sea cores reflect the latitudinal gradient detected in the Iberian Peninsula atmospheric temperature proxies during H1 and the B-A, the Tagus mud patch (core D13882) experienced colder SSTs during both events. This is most certainly related to a supplementary input of cold freshwater from the continent to the Tagus mud patch, a hypothesis supported by the high contents of terrigenous biomarkers and total organic carbon as well as by the dominance of tetra-unsaturated alkenone (C37:4) observed at this site. The comparison of all western Iberia SST records suggests that the SST increase that characterizes the B-A event in this region started 1000 yr before meltwater pulse 1A (mwp-1A) and reached its maximum values during or slightly after this episode of substantial sea-level rise. In contrast, during the YD/ Holocene transition, the sharp SST rise in the Tagus mud patch is synchronous with meltwater pulse IB. The decrease of continental input to the mud patch conflrms a sea level rise in the region. Thus, the synchronism between the maximum warming in the mid-latitudes off the western Iberian margin, the adjacent landmasses and Greenland indicates that mwp-lB and the associated sea-level rise probably initiated in the Northern Hemisphere rather than in the South.
Resumo:
The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica (Cook et al., 2005, doi:10.1126/science.1104235; Stammerjohn et al., 2008, doi:10.1016/j.dsr2.2008.04.026) highlight the impact of recent atmospheric (Steig et al., 2009, doi:10.1038/nature07669) and oceanic warming (Gille, 2002, doi:10.1126/science.1065863) on the cryosphere. Observations (Cook et al., 2005, doi:10.1126/science.1104235; Stammerjohn et al., 2008, doi:10.1016/j.dsr2.2008.04.026) and models (Pollard and DeConto, 2009, doi:10.1038/nature07809) suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000?years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX86 sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations (Huybers and Denton, 2008, doi:10.1038/ngeo311). On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability (Mayewski et al., 2004, doi:10.1016/j.yqres.2004.07.001). Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions (Moreno et al., 2010, doi:10.1130/G30962.1) and El Niño/Southern Oscillation variability (Conroy et al., 2008, doi:10.1016/j.quascirev.2008.02.015) indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula (Yuan et al., 2004, doi:10.1017/S0954102004002238) strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling (Moreno et al., 2010, doi:10.1130/G30962.1; Anderson et al., 2009, doi:10.1126/science.1167441).
Resumo:
A high-resolution sea surface temperature (SST) reconstruction of the western Mediterranean was accomplished using two independent, algae-based molecular organic proxies, i.e. the UK'37 index based on long-chain unsaturated ketones and the novel long-chain diol index (LDI) based on the relative abundances of C28 and C30 1,13- and 1,15-diols. Two marine records, from the western and eastern Alboran Sea basin, spanning the last 14 and 20 kyr, respectively, were studied. Results from the surface sediments suggest that the two proxies presently reflect seasons with similar SST, or simply annual mean SST. Both proxy records reveal the transition from the Last Glacial Maximum to the Holocene in the eastern Alboran Sea with an SST increase of ca. 7 °C for UK'37 and 9 °C for LDI. Minimum SSTs (10-12 °C) are reached at the end of the Last Glacial Maximum and during the last Heinrich event with a subsequent rapid SST increase in LDI-SST towards the beginning of the Bölling period (20 °C), while UK'37-SST remains constantly low (~12 °C). The Bölling-Alleröd is characterized by a rapid increase and subsequent decrease in UK'37-SST, while the LDI-SST decrease continuously. Short-term fluctuations in UK'37-SST are probably related to availability of nutrients and seasonal changes. The Younger Dryas is recorded as a short cold interval followed by progressively warmer temperatures. During the Holocene, the general lower UK'37-derived temperature values in the eastern Alboran (by ca. 1.5-2 °C) suggest a southeastward cold water migration by the western Alboran gyre and divergence in the haptophyte blooming season between both basins.
Resumo:
Selected multi-proxy and accurately dated marine and terrestrial records covering the past 2000 years in the Iberian Peninsula (IP) facilitated a comprehensive regional paleoclimate reconstruction for the Medieval Climate Anomaly (MCA: 900-1300 AD). The sequences enabled an integrated approach to land-sea comparisons and, despite local differences and some minor chronological inconsistencies, presented clear evidence that the MCA was a dry period in the Mediterranean IP. It was a period characterized by decreased lake levels, more xerophytic and heliophytic vegetation, a low frequency of floods, major Saharan eolian fluxes, and less fluvial input to marine basins. In contrast, reconstruction based on sequences from the Atlantic Ocean side of the peninsula indicated increased humidity. The data highlight the unique characteristics of the MCA relative to earlier (the Dark Ages, DA: ca. 500-900 years AD) and subsequent (the Little Ice Age, LIA: 1300-1850 years AD) colder periods. The reconstruction supports the hypothesis of Trouet et al. (2009, doi:10.1126/science.1166349), that a persistent positive mode of the North Atlantic Oscillation (NAO) dominated the MCA.
Resumo:
The southwest Pacific Ocean covers a broad range of surface-water conditions ranging from warm, salty water in the subtropical East Australian Current to fresher, cold water in the Circumpolar Current. Using a new database of planktonic foraminifera assemblages (AUSMAT-F2), we demonstrate that the modern analog technique can be used to accurately reconstruct the magnitude of sea-surfacetemperature (SST) in this region. We apply this technique to data from 29 deep-sea cores along a meridional transect of the southwest Pacific Ocean to estimate the magnitude of SST cooling during the Last Glacial Maximum. We find minimal cooling in the tropics (0°-2°C), moderate cooling in the subtropical midlatitudes (2°-6°C), and maximum cooling to the southeast of New Zealand (6°-10°C). The magnitude of cooling at the sea surface from the tropics to the temperate latitudes is found to generally be less than cooling at the surface of adjacent land masses.
Resumo:
We present two ~270 kyr paleo-sea surface temperature (SST) records from the Equatorial Divergence and the South Equatorial Current derived from Mg/Ca ratios in the planktic foraminifer Globigerinoides sacculifer. The present study suggests that the magnesium signature of G. sacculifer provides a seasonal SST estimate from the upper ~50 m of the water column generated during upwelling in austral low-latitude fall/winter. Common to both down-core records is a glacial-interglacial amplitude of ~3°-3.5°C for the last climatic changes and lower Holocene and glacial oxygen isotope stage 2 temperatures compared with interglacial stage 5.5 and glacial stage 6 temperatures, respectively. The comparison to published SST estimates from alkenones, oxygen isotopes, and foraminiferal transfer function from the same core material pinpoints discrepancies and conformities between methods.