316 resultados para leaf margin analysis
Resumo:
During the expeditions ARK-VII/1, ARK-VII/3 and ARK-Xl2 sediment cores were taken by "RV Polarstern" from the shelf and the fjords of East Greenland and the Greenland Sea. The magnetic susceptibility and heavy mineral were determined at 48 surface sediment samples from undisturbed box cores. The main objective of this study was the identification of source areas and transport processes of terrigenous sediments at the East Greenland continental margin. The results can be summarized as lollows: 1a) Magnetic susceptibility in the North Atlantic is useful to detect delivery regions of the material transported by currents. b) The magnetic susceptibility is controlled by the ferromagnetic particles of the silt fraction. c) There are four important source areas: . The ferromagnetic particles of the box core PS2644-2 are transported from the Iceland Archipelago. . The material from the Geiki-Plateau effects the magnetic susceptibility in the Scoresby Sund Basin. . The magnetic susceptibility in the shelf regions in the North are produced by material from the fjords. . The ferromagnetic particles in the Greenland Sea are derived from the Mid Atlantic Ridges in the east. d) It is possible to determine the rock type, which delivers the ferromagnetic material because of differences in magnetic susceptibility of different intensity. . The erosion of the basalts of the Geiki-Plateau and the basalts of the Mid Atlantic ridges produce the high magnetic susceptibility in the south. . The magnetic susceptibility on the shelf in the north are probably produced by erosionproducts of the gneises of East Greenland. (2a) Heavy mineral assemblages show a significant difference between material transported by the Transpolar Drift from the Eurasian shelf regions (amphiboles, clinopyroxene, orthopyroxene) and material derived from East Greenland (garnets and opaque minerals). Transport via ice is dominant. b) lt is also possible to show different petrographic provenances (volcanic and metamorphic provenances). These associations verify the source areas. c) The information of heavy mineral composition gives no more detailed hint on the rock type or rock formation in the source area, due to mixing processes, large area of investigation and the sample quantity.
Resumo:
Sedimentological analyses concerning ice rafted debris, grain size distribution, biogenous components, and clay mineral composition of four sediment cores from the Antarctic continental margin off Kapp Norvegia reveal a cyclical pattern of three different sediment facies. These are classified into warm and cold types representing warm and cold climatic periods and a short transition period from cold to warm events. The sedimentological parameters reflect the variations within the cryosphere and the hydrosphere, which are directly influenced by the climatic fluctuations. The unusually high content of carbonaceous planktonic and benthonic foraminifera in these polar sediments, as well as the interfingering of terrigeneous and biogeneous-rich sediments with increasing distance from the continent, might reflect the influence of the Weddell Sea Polynya and the oscillations of polynya, pack-ice and ice shelf extent during the late Pleistocene.
Resumo:
Based on a well-established stratigraphic framework and 47 AMS-14C dated sediment cores, the distribution of facies types on the NW Iberian margin is analysed in response to the last deglacial sea-level rise, thus providing a case study on the sedimentary evolution of a high-energy, low-accumulation shelf system. Altogether, four main types of sedimentary facies are defined. (1) A gravel-dominated facies occurs mostly as time-transgressive ravinement beds, which initially developed as shoreface and storm deposits in shallow waters on the outer shelf during the last sea-level lowstand; (2) A widespread, time-transgressive mixed siliceous/biogenic-carbonaceous sand facies indicates areas of moderate hydrodynamic regimes, high contribution of reworked shelf material, and fluvial supply to the shelf; (3) A glaucony-containing sand facies in a stationary position on the outer shelf formed mostly during the last-glacial sea-level rise by reworking of older deposits as well as authigenic mineral formation; and (4) A mud facies is mostly restricted to confined Holocene fine-grained depocentres, which are located in mid-shelf position. The observed spatial and temporal distribution of these facies types on the high-energy, low-accumulation NW Iberian shelf was essentially controlled by the local interplay of sediment supply, shelf morphology, and strength of the hydrodynamic system. These patterns are in contrast to high-accumulation systems where extensive sediment supply is the dominant factor on the facies distribution. This study emphasises the importance of large-scale erosion and material recycling on the sedimentary buildup during the deglacial drowning of the shelf. The presence of a homogenous and up to 15-m thick transgressive cover above a lag horizon contradicts the common assumption of sparse and laterally confined sediment accumulation on high-energy shelf systems during deglacial sea-level rise. In contrast to this extensive sand cover, laterally very confined and maximal 4-m thin mud depocentres developed during the Holocene sea-level highstand. This restricted formation of fine-grained depocentres was related to the combination of: (1) frequently occurring high-energy hydrodynamic conditions; (2) low overall terrigenous input by the adjacent rivers; and (3) the large distance of the Galicia Mud Belt to its main sediment supplier.
Resumo:
The microbially mediated anaerobic oxidation of methane (AOM) is the major biological sink of the greenhouse gas methane in marine sediments (doi:10.1007/978-94-009-0213-8_44) and serves as an important control for emission of methane into the hydrosphere. The AOM metabolic process is assumed to be a reversal of methanogenesis coupled to the reduction of sulfate to sulfide involving methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) as syntrophic partners which were describes amongst others in Boetius et al. (2000; doi:10.1038/35036572). In this study, 16S rRNA-based methods were used to investigate the distribution and biomass of archaea in samples from sediments above outcropping methane hydrate at Hydrate Ridge (Cascadia margin off Oregon) and (ii) massive microbial mats enclosing carbonate reefs (Crimea area, Black Sea). Sediment samples from Hydrate Ridge were obtained during R/V SONNE cruises SO143-2 in August 1999 and SO148-1 in August 2000 at the crest of southern Hydrate Ridge at the Cascadia convergent margin off the coast of Oregon. The second study area is located in the Black Sea and represents a field in which there is active seepage of free gas on the slope of the northwestern Crimea area. Here, a field of conspicuous microbial reefs forming chimney-like structures was discovered at a water depth of 230 m in anoxic waters. The microbial mats were sampled by using the manned submersible JAGO during the R/V Prof. LOGACHEV cruise in July 2001. At Hydrate Ridge the surface sediments were dominated by aggregates consisting of ANME-2 and members of the Desulfosarcina-Desulfococcus branch (DSS) (ANME-2/DSS aggregates), which accounted for >90% of the total cell biomass. The numbers of ANME-1 cells increased strongly with depth; these cells accounted 1% of all single cells at the surface and more than 30% of all single cells (5% of the total cells) in 7- to 10-cm sediment horizons that were directly above layers of gas hydrate. In the Black Sea microbial mats ANME-1 accounted for about 50% of all cells. ANME-2/DSS aggregates occurred in microenvironments within the mat but accounted for only 1% of the total cells. FISH probes for the ANME-2a and ANME-2c subclusters were designed based on a comparative 16S rRNA analysis. In Hydrate Ridge sediments ANME-2a/DSS and ANME-2c/DSS aggregates differed significantly in morphology and abundance. The relative abundance values for these subgroups were remarkably different at Beggiatoa sites (80% ANME-2a, 20% ANME-2c) and Calyptogena sites (20% ANME-2a, 80% ANME-2c), indicating that there was preferential selection of the groups in the two habitats.
Resumo:
Glycolipids are prominent constituents in the membranes of cells from all domains of life. For example, diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2Gly-GDGTs) are associated with methanotrophic ANME-1 archaea and heterotrophic benthic archaea, two archaeal groups of global biogeochemical importance. The hydrophobic biphytane moieties of 2Gly-GDGTs from these two uncultivated archaeal groups exhibit distinct carbon isotopic compositions. To explore whether the isotopic compositions of the sugar headgroups provide additional information on the metabolism of their producers, we developed a procedure to analyze the d13C values of glycosidic headgroups. Successful determination was achieved by (1) monitoring the contamination from free sugars during lipid extraction and preparation, (2) optimizing the hydrolytic conditions for glycolipids, and (3) derivatizing the resulting sugars into aldononitrile acetate derivatives, which are stable enough to withstand a subsequent column purification step. First results of d13C values of sugars cleaved from 2Gly-GDGTs in two marine sediment samples, one containing predominantly ANME-1 archaea and the other benthic archaea, were obtained and compared with the d13C values of the corresponding biphytanes. In both samples the dominant sugar headgroups were enriched in 13C relative to the corresponding major biphytane. This 13C enrichment was significantly larger in the putative major glycolipids from ANME-1 archaea (~15 per mil) than in those from benthic archaea (<7 per mil). This method opens a new analytical window for the examination of carbon isotopic relationships between sugars and lipids in uncultivated organisms.
Resumo:
Focussing on heavy-mineral associations in the Laptev-Sea continental margin area and the eastern Arctic Ocean, 129 surface sediment samples, two short and four long gravity cores have been studied. By means of the accessory components, heavy-mineral associations of surface sediment samples from the Laptev-See continental slope allowed the distinction into two different mineralogical provinces, each influenced by fluvial input of the Siberian river Systems. Transport pathways via sea ice from the shallow shelf areas into the Arctic Ocean up to the final ablation areas of the Fram Strait can be reconstructed by heavy-mineral data of surface sediments from the central Arctic Ocean. The shallow shelf of the Laptev Sea seems to be the most important source area for terrigenous material, as indicated by the abundant occurence of amphiboles and clinopyroxenes. Underneath the mixing Zone of the two dominating surface circulation Systems, the Beaufort- Gyre and Transpolar-Drift system, the imprint of the Amerasian shelf regions up to the Fram Strait is detectable because of a characteristical heavy-mineral association dominated by detrital carbonate and opaque minerals. Based On heavy-mineral characteristics of the potential circum-Arctic source areas, sea-ice drift, origin and distribution of ice-rafted material can be reconstructed during the past climatic cycles. Different factors controlling the transport of terrigenous material into the Arctic Ocean. The entrainment of particulate matter is triggered by the sea level, which flooded during highs and lows different regions resulting in the incorporation of sediment from different source areas into the sea ice. Additionally, the fluvial input even at low stands of sea level is responsible for the delivery of material of distinct sources for entrainment into the sea ice. Glacials and interglacials of climate cycles of the last 780 000 years left a characteristical signal in the central Arctic Ocean sediments caused by the ice- rafted material from different sources in the circum-Arctic regions and its change through time. Changes in the heavy-mineral association from an amphibole-dominated into a garnet-epidote-assemblage can be related to climate-related changes in source areas and directions of geostrophic winds, the dominating drive of the sea-ice drift. During Marine Isotope Stage (MIS) 6, the central Arctic Ocean is marked by an heavy-mineral signal, which occurs in recent sediments of the eastern Kara Sea. Its characteristics are high amounts of epidote, garnet and apatite. On the other hand, during the Same time interval a continuous record of Laptev Sea sediments is documented with high contents of amphiboles on the Lomonosov Ridge near the Laptev Sea continental slope. A nearly similar Pattern was detected in MIS 5 and 4. Small-scale glaciations in the Putorana-mountains and the Anabar-shield may have caused changes in the drainage area of the rivers and therefore a change in fluvial input. During MIS 3, the heavy-mineral association of central Arctic sediments show similar patterns than the Holocene mineral assemblage which consists of amphiboles, ortho- and clinopyroxenes with a Laptev Sea source. These minerals are indicating a stable Transpolar-Drift system similar to recent conditions. An extended influence of the Beaufort Gyre is only recognized, when sediment material from the Amerasian shelf areas reached the core location PS2757-718 during Termination Ib. Based On heavy-mineral data from Laptev-Sea continental slope Core PS2458-4 the paleo-sea-ice drift in the Laptev Sea during 14.000 years was reconstructed. During Holocene sea-level rise, the bathymetrically deeper parts of the Western shelf were flooded first. At the beginning of the Atlantic stage, nearly the entire shelf was marine influenced by fully marine conditions and the recent surface circulation was established.
Resumo:
Continental margin sediments of SE South America originate from various terrestrial sources, each conveying specific magnetic and element signatures. Here, we aim to identify the sources and transport characteristics of shelf and slope sediments deposited between East Brazil and Patagonia (20°-48°S) using enviromagnetic, major element, and grain-size data. A set of five source-indicative parameters (i.e., chi-fd%, ARM/IRM, S0.3T, SIRM/Fe and Fe/K) of 25 surface samples (16-1805 m water depth) was analyzed by fuzzy c-means clustering and non-linear mapping to depict and unmix sediment-province characteristics. This multivariate approach yields three regionally coherent sediment provinces with petrologically and climatically distinct source regions. The southernmost province is entirely restricted to the slope off the Argentinean Pampas and has been identified as relict Andean-sourced sands with coarse unaltered magnetite. The direct transport to the slope was enabled by Rio Colorado and Rio Negro meltwaters during glacial and deglacial phases of low sea level. The adjacent shelf province consists of coastal loessoidal sands (highest hematite and goethite proportions) delivered from the Argentinean Pampas by wave erosion and westerly winds. The northernmost province includes the Plata mudbelt and Rio Grande Cone. It contains tropically weathered clayey silts from the La Plata Drainage Basin with pronounced proportions of fine magnetite, which were distributed up to ~24° S by the Brazilian Coastal Current and admixed to coarser relict sediments of Pampean loessoidal origin. Grain-size analyses of all samples showed that sediment fractionation during transport and deposition had little impact on magnetic and element source characteristics. This study corroborates the high potential of the chosen approach to access sediment origin in regions with contrasting sediment sources, complex transport dynamics, and large grain-size variability.
Resumo:
The area west of the Antarctic Peninsula is a key region for studying and understanding the history of glaciation in the southern high latitudes during the Neogene with respect to variations of the western Antarctic continental ice sheet, variable sea-ice cover, induced eustatic sea level change, as well as consequences for the global climatic system (Barker, Camerlenghi, Acton, et al., 1999). Sites 1095, 1096, and 1101 were drilled on sediment drifts forming the continental rise to examine the nature and composition of sediments deposited under the influence of the Antarctic Peninsula ice sheet, which has repeatedly advanced to the shelf edge and subsequently released glacially eroded material on the continental shelf and slope (Barker et al., 1999). Mass gravity processes on the slope are responsible for downslope sediment transport by turbidity currents within a channel system between the drifts. Furthermore, bottom currents redistribute the sediments, which leads to final build up of drift bodies (Rebesco et al., 1998). The high-resolution sedimentary sequences on the continental rise can be used to document the variability of continental glaciation and, therefore, allow us to assess the main factors that control the sediment transport and the depositional processes during glaciation periods and their relationship to glacio-eustatic sea level changes. Site 1095 lies in 3840 m of water in a distal position on the northwestern lower flank of Drift 7, whereas Site 1096 lies in 3152 m of water in a more proximal position within Drift 7. Site 1101 is located at 3509 m water depth on the northwestern flank of Drift 4. All three sites have high sedimentation rates. The oldest sediments were recovered at Site 1095 (late Miocene; 9.7 Ma), whereas sediments of Pliocene age were recovered at Site 1096 (4.7 Ma) and at Site 1101 (3.5 Ma). The purpose of this work is to provide a data set of bulk sediment parameters such as CaCO3, total organic carbon (TOC), and coarse-fraction mass percentage (>63 µm) measured on the sediments collected from the continental rise of the western Antarctic Peninsula (Holes 1095A, 1095B, 1096A, 1096B, 1096C, and 1101A). This information can be used to understand the complex depositional processes and their implication for variations in the climatic system of the western Pacific Antarctic margin since 9.7 Ma (late Miocene). Coarse-fraction particles (125-500 µm) from the late Pliocene and Pleistocene (4.0 Ma to recent) sediments recovered from Hole 1095A were microscopically analyzed to gather more detailed information about their variability and composition through time. These data can yield information about changes in potential source regions of the glacially eroded material that has been transported during repeated periods of ice-sheet movements on the shelf.