304 resultados para gas-particle distribution
Resumo:
Sediment whole-round cores from a dedicated hole (798B) were obtained for detailed microbiological analysis, down to 518 m below the seafloor (mbsf). These sediments have characteristic bacterial profiles in the top 6 mbsf, with high but rapidly decreasing bacterial populations (total and dividing bacteria, and concentrations of different types of viable heterotrophic bacteria) and potential bacterial activities. Rates of thymidine incorporation into bacterial DNA and anaerobic sulfate reduction are high in the surface sediments and decrease rapidly down to 3 mbsf. Methanogenesis from CO2/H2 peaks below the maximum in sulfate reduction and although it decreases markedly down the core, is present at low rates at all but one depth. Consistent with these activities is the removal of pore-water sulfate, methane gas production, and accumulation of reduced sulfide species. Rates of decrease in bacterial populations slow down below 6 mbsf, and there are some distinct increases in bacterial populations and activities that continue over considerable depth intervals. These include a large and significant increase in total heterotrophic bacteria below 375 mbsf, which corresponds to an increase in the total bacterial population, bacterial viability, a small increase in potential rates of sulfate reduction, and the presence of thermogenic methane and other gases. Bacterial distributions seem to be controlled by the availability of terminal electron acceptors (e.g., sulfate), the bioavailability of organic carbon (which may be related to the dark/light bands within the sediment), and biological and geothermal methane production. Significant bacterial populations are present even in the deepest samples (518 mbsf) and hence it seems likely that bacteria may continue to be present and active much deeper than the sediments studied here. These results confirm and extend our previous results of bacterial activity within deep sediments of the Peru Margin from Leg 112, and to our knowledge this is the first comprehensive report of the presence of active bacterial populations from the sediment surface to in excess of 500 mbsf and sediments > 4 m.y. old.
Resumo:
We analysed long-term variations in grain-size distribution in sediments from Gåsfjärden, a fjord-like inlet on the south-west Baltic Sea, and explored potential drivers of the recorded changes in sediment grain-size data. Over the last 5.4 thousand years (ka), the relative sea level decreased 17 m in the study region, caused by isostatic land uplift. As a consequence, Gåsfjärden has been transformed from an open coastal setting into a semi-closed inlet surrounded on the east by numerous small islands. To quantitatively estimate the morphological changes in Gåsfjärden over the last 5.4 ka and to further link the changes to our grain-size data, a digital elevation model (DEM)-based openness index was calculated. In the period between 5.4 and 4.4 ka BP, the inlet was characterised by the largest openness index. During this interval, the highest sand contents (~0.4 %) and silt/clay ratios (~0. 3) in the sediment sequence were recorded, indicating relatively high bottom water energy. After 4.4 ka BP, the average sand content was halved to ~0.2 % and the silt/clay ratios showed a significant decreasing trend over the last 4 ka. These changes are found to be associated with the gradual embayment of Gåsfjärden as represented in the openness index. The silt/clay ratios exhibited a delayed and slower change compared with the sand contents, which further suggest that finer particles are less sensitive to changes in hydrodynamic energy. Our DEM-based coastal openness index has proved to be a useful tool for interpreting the sedimentary grain-size record.
Resumo:
The sediment temperature distribution at mud volcanoes provides insights into their activity and into the occurrence of gas hydrates. If ambient pressure and temperature conditions are close to the limits of the gas hydrate stability field, the sediment temperature distribution not only limits the occurrence of gas hydrates, but is itself influenced by heat production and consumption related to the formation and dissociation of gas hydrates. Located in the Sorokin Trough in the northern Black Sea, the Dvurechenskii mud volcano (DMV) was in the focus of detailed investigations during the M72/2 and M73/3a cruises of the German R/V Meteor and the ROV Quest 4000 m in February and March 2007. A large number of in-situ sediment temperature measurements were conducted from the ROV and with a sensor-equipped gravity corer. Gas hydrates were sampled in pressurized cores using a dynamic autoclave piston corer (DAPC). The thermal structure of the DMV suggests a regime of fluid flow at rates decreasing from the summit towards the edges of the mud volcano, accompanied by intermittent mud expulsion at the summit. Modeled gas hydrate dissociation temperatures reveal that the gas hydrates at the DMV are very close to the stability limits. Changes in heat flow due to variable seepage rates probably do not result in changes in sediment temperature but are compensated by gas hydrate dissociation and formation.
Resumo:
Two years of harmonized aerosol number size distribution data from 24 European field monitoring sites have been analysed. The results give a comprehensive overview of the European near surface aerosol particle number concentrations and number size distributions between 30 and 500 nm of dry particle diameter. Spatial and temporal distribution of aerosols in the particle sizes most important for climate applications are presented. We also analyse the annual, weekly and diurnal cycles of the aerosol number concentrations, provide log-normal fitting parameters for median number size distributions, and give guidance notes for data users. Emphasis is placed on the usability of results within the aerosol modelling community. We also show that the aerosol number concentrations of Aitken and accumulation mode particles (with 100 nm dry diameter as a cut-off between modes) are related, although there is significant variation in the ratios of the modal number concentrations. Different aerosol and station types are distinguished from this data and this methodology has potential for further categorization of stations aerosol number size distribution types. The European submicron aerosol was divided into characteristic types: Central European aerosol, characterized by single mode median size distributions, unimodal number concentration histograms and low variability in CCN-sized aerosol number concentrations; Nordic aerosol with low number concentrations, although showing pronounced seasonal variation of especially Aitken mode particles; Mountain sites (altitude over 1000 m a.s.l.) with a strong seasonal cycle in aerosol number concentrations, high variability, and very low median number concentrations. Southern and Western European regions had fewer stations, which decreases the regional coverage of these results. Aerosol number concentrations over the Britain and Ireland had very high variance and there are indications of mixed air masses from several source regions; the Mediterranean aerosol exhibit high seasonality, and a strong accumulation mode in the summer. The greatest concentrations were observed at the Ispra station in Northern Italy with high accumulation mode number concentrations in the winter. The aerosol number concentrations at the Arctic station Zeppelin in Ny-Ålesund in Svalbard have also a strong seasonal cycle, with greater concentrations of accumulation mode particles in winter, and dominating summer Aitken mode indicating more recently formed particles. Observed particles did not show any statistically significant regional work-week or weekday related variation in number concentrations studied. Analysis products are made for open-access to the research community, available in a freely accessible internet site. The results give to the modelling community a reliable, easy-to-use and freely available comparison dataset of aerosol size distributions.