318 resultados para density surface modelling


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mediterranean Sea is a partillay isolated ocean where excess evaporation over precipitation results in large east to west gradients in temperature and salinity. Recent planktonic foraminiferal distributions have been examined in 66 surface sediment samples from the Mediterranean Sea. In addition to mapping the frequency distribution of 16 species, the faunal data has been subjected to cluster analysis, factor analysis and species diversity analysis. The clustering of species yields assemblages that are clearly temperature related. A warm assemblage contains both tropical and subtropical elements, while the cool assemblage can be subdivided into cool-subtropical, transitional and polar-subpolar groupings. Factor analysis is used to delineate the geographic distribution of four faunal assemblages. Factor 1 is a tropical-subtropical assemblage dominated by Globigerinoiden ruber. It has its highest values in the warmer eastern basin. Transitional species (Globorotalia inflata and Globigerina bulloides) dominate factor 2 with highest values occurring in the cooler western basin. Factor 3 reflects the distribution of Neogloboquadrina dutertrei and is considered to be salinity dependent. Subpolar species dominate factor 4 (Neoglobuquadrina pachyderma and G. bulloides), with highest values occurring in the northern part of the western basin where cold bottom water is presently being formed. The Shannon-Weiner index of species diversity shows that high diversity exists over much of the western basin and immediately east of the Strait of Sicily. This region is marked by equitable environmental conditions and relatively even distribution of individuals among the species. Conversely, in areas where temperature and salinity values are more extreme, diversity values are lower and the assemblages are dominated by one or two species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The McMurdo Dry Valleys, Antarctica (MDV) are among the oldest landscapes on Earth, and some landforms there present an intriguing apparent contradiction such that millions of years old surface deposits maintain their meter-scale morphology despite the fact that measured erosion rates are 0.1-4 m/Ma. We analyzed the concentration of cosmic ray-produced 10Be and 26Al in quartz sands from regolith directly above and below two well-documented ash deposits in the MDV, the Arena Valley ash (40Ar/39Ar age of 4.33 Ma) and the Hart ash (K-Ar age of 3.9 Ma). Measured concentrations of 10Be and 26Al are significantly less than expected given the age of the in situ air fall ashes and are best interpreted as reflecting the degradation rate of the overlying sediments. The erosion rate of the material above the Arena Valley ash that best explains the observed isotope profiles is 3.5 ± 0.41 x 10**-5 g/cm**2/yr (~0.19 m/Ma) for the past ~4 Ma. For the Hart ash, the erosion rate is 4.8 ± 0.21 x 10**-4 g/cm**2/yr (~2.6 m/Ma) for the past ~1 Ma. The concentration profiles do not show signs of mixing, creep, or deflation caused by sublimation of ground ice. These results indicate that the slow, steady lowering of the surface without vertical mixing may allow landforms to maintain their meter-scale morphology even though they are actively eroding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface active substances (SAS) in the water column were measured by voltammetry using the electrochemical probe o-nitrophenol (ONP) during EIFEX, a mesoscale open ocean iron enrichment experiment in the Southern Ocean. SAS levels were low throughout the experiment (<0.005 - 0.03 mg/L Triton X-100 equivalents). Initially SAS was extremely low in the photic zone, but as the phytoplankton bloom developed concentrations markedly increased throughout the upper 100 m (~0.02 mg/L Triton X-100 equivalents). Highest concentrations of SAS (>0.02 mg/L Triton X-100 equivalents) were found at the end of the bloom particularly at density discontinuities where organic material may accumulate. Exudates from diatoms appeared to be the major source of SAS during EIFEX, either from direct extracellular release or in the action of being grazed upon by zooplankton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One main point of our atmospheric-electric measurements over the Atlantic Ocean 1973 was the investigation of the air-earth current density above the sea. In addition to direct measurements at the water surface with a floating net, we calculated the air-earth current density from the electric field and the air conductivity measured simultaneously on board of the ship and during particular ascents in the free atmosphere. During all five ascents the air-earth current density did not change with altitude. For pure maritime air-conditions, the mean air-earth current density was found to be 2.9 pA/m**2. The mean hourly air-earth current density over the Atlantic shows nearly the same 24-hour pattern as measured by Cobb (1977) at the South Pole at the same time. When dust-loaden air masses of African origin reached the ship as well as under continental influence the mean air-earth current density was reduced to 2.1 pA/m**2. The global 24-hour pattern was modified by this continental influences. Finally, it is shown that the values of the air conductivity measured on board R. V. "Meteor" during our earlier expeditions have been influenced by the exhaust of the ship and must therefore be corrected. With this correction, our new mean values of the air-earth current density over the Atlantic are 2.6 pA/m**2 in 1965 and 2.0 pA/m**2 in 1969. From all measurements, the global air-earth current is estimated to be about 1250 A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To enhance the limited information available about the palaeo-ecological significance of calcareous dinoflagellates, we have studied their lateral distribution in surface sediments of the equatorial and south Atlantic between 13°N and 36°S. Calcareous dinoflagellate cysts appear to be widely distributed throughout the studied area. In the surface sediments, concentrations (cyst per gram dry sediment) of the vegetative stage Thoracosphaera heimii are generally higher than that of the (presumably) calcareous resting cysts. Distribution patterns in surface sediments of Orthopithonella granifera (Fütterer) Keupp and Versteegh, Rhabdothorax spp. Kamptner., Sphaerodinella albatrosiana (Kamptner) Keupp and Versteegh S. albatrosiana praratabulated, Sphaerodinella tuberosa var. 1 (Kamptner) Keupp and Versteegh and S. tuberosa var. 2 and the ratios between these species have been compared with temperature, salinity, density and stratification gradients in the upper water column. Rhabdothorax spp. is characteristically present in sediments of more temperate regions characterized by high seasonality. Dinoflagellates producing these cysts are able to tolerate high nutrient concentrations, and mixing of the water column. S. albatrosiana is abundant in regions characterized by high sea surface temperatures and oligotrophic surface water conditions. In contrast, the distribution of S. tuberosa var. 2 is negatively related to temperature. The other cyst species did not show a characteristic pattern in relation to the studied environmental gradients. The ratio of Sphaerodinella tuberosa var. 2 to Orthopithonella granifera can be used for reconstructing the presence of stratification in the upper 50 m of the water column, whereas the ratios of S. tuberosa var. 2 to Sphaerodinella albatrosiana and of O. granifera to Rhabdothorax spp. might be used for palaeotemperature reconstructions. Calcareous dinoflagellate cysts are abundant in oligotrophic areas and may be useful for the reconstruction of palaeoenvironmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the first high-resolution organic carbon mass accumulation rate (MAR) data set for the Eocene equatorial Pacific upwelling region, from Sites 1218 and 1219 of the Ocean Drilling Program. A maximum Corg MAR anomaly appears at 41 Ma and corresponds to a high carbonate accumulation event (CAE). Independent evidence suggests that this event (CAE-3) was a time of rapid cooling. Throughout the Eocene, organic carbon burial fluxes were an order of magnitude lower than fluxes recorded for the Holocene. In contrast, the expected organic carbon flux, calculated from the biogenic barium concentrations for these sites, is roughly equal to modern. A sedimentation anomaly appears at 41 Ma, when both the measured and the expected organic carbon MAR increases by a factor of two-three relative to the background Eocene fluxes. The rain of estimated Corg and barium from the euphotic zone to the sediments increased by factors of three and six, respectively. We suggest that the discrepancy between the expected and measured Corg in the sediments is a direct consequence of the increased metabolic rates of all organisms throughout the Eocene oceans and sediments. This hypothesis is supported by recent work in ecology and biochemical kinetics that recognizes the fundamental basis of ecology as following from the laws of thermodynamics. This dependence is now elucidated as the Universal Temperature Dependence (UTD) "law" of metabolism and can be applied to all organisms over their biologically relevant temperature range. The general pattern of organic carbon and barium deposition throughout the Eocene is consistent with the UTD theory. In particular, the anomaly at 41 Ma (CAE-3) is associated with rapid cooling, an event that triggered slower metabolic rates for all organisms, slower recycling of organic carbon in the water and sediment column, and, consequently, higher deposition of organic carbon in the sediments. This "metabolism-based" scenario is consistent with the sedimentation patterns we observe for both Sites 1218 and 1219.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent coccoliths from 74 surface sediment samples recovered from the southeastern Pacific off Chile were examined quantitatively to investigate modern regional gradients of sea surface productivity and temperature. All findings are based on coccolith accumulation rates. Therefore an approach was designed to estimate recent sedimentation rates based on 210Pb and bulk chemistry analyses of the same set of surface samples. Highest total coccolith accumulation rates were found off north-central Chile, where seasonal upwelling takes place. Based on amultiple linear regression between calculated coccolith accumulation rates andWorld Ocean Atlas derived sea surface temperatures, a calibrationmodel to reconstruct annual average temperatures of the uppermost 75 mof thewater column is provided. Themodelwas cross-validated and the SST estimateswere compared with SST observed and SST estimates based on diatoms and planktonic foraminifera, showing a good correlation.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil degradation threatens agricultural production and food security in Sub-Saharan Africa. In the coming decades, soil degradation, in particular soil erosion, will become worse through the expansion of agriculture into savannah and forest and changes in climate. This study aims to improve the understanding of how land use and climate change affect the hydrological cycle and soil erosion rates at the catchment scale. We used the semi-distributed, time-continuous erosion model SWAT (Soil Water Assessment Tool) to quantify runoff processes and sheet and rill erosion in the Upper Ouémé River catchment (14500 km**2, Central Benin) for the period 1998-2005. We could then evaluate a range of land use and climate change scenarios with the SWAT model for the period 2001-2050 using spatial data from the land use model CLUE-S and the regional climate model REMO. Field investigations were performed to parameterise a soil map, to measure suspended sediment concentrations for model calibration and validation and to characterise erosion forms, degraded agricultural fields and soil conservation practices. Modelling results reveal current "hotspots" of soil erosion in the north-western, eastern and north-eastern parts of the Upper Ouémé catchment. As a consequence of rapid expansion of agricultural areas triggered by high population growth (partially caused by migration) and resulting increases in surface runoff and topsoil erosion, the mean sediment yield in the Upper Ouémé River outlet is expected to increase by 42 to 95% by 2025, depending on the land use scenario. In contrast, changes in climate variables led to decreases in sediment yield of 5 to 14% in 2001-2025 and 17 to 24% in 2026-2050. Combined scenarios showed the dominance of land use change leading to changes in mean sediment yield of -2 to +31% in 2001-2025. Scenario results vary considerably within the catchment. Current "hotspots" of soil erosion will aggravate, and a new "hotspot" will appear in the southern part of the catchment. Although only small parts of the Upper Ouémé catchment belong to the most degraded zones in the country, sustainable soil and plant management practices should be promoted in the entire catchment. The results of this study can support planning of soil conservation activities in Benin.