420 resultados para continental Antarctica
Resumo:
Three sediment cores from the continental shelf and slope off NW Africa (Banc d'Arguin; 52 m, 665 m and 973 m water depth) have been investigated by means of a coarse fraction analysis. The two shallower cores have been deposited during less than 10,000 years, the deeper one during the last 36,000 years. The Holocene sedimentation ( 4000 years) in the deeper part of core 79 the edge of the Banc d'Arguin is strongly influenced by reworking of Late Glacial dune sands and biogenic particles from shallower ware (<40 m), as well as eroding current influence. A decrease in grain size of silicate material and a decrease in lateral supply, correlated to a doubling of accumulation rates in the upper part of the core, indicates a more autochthonous sedimentation with less sorting influence in the youngest Holocene. The depth of provenance of the allochttonous material can be assumed in 100-300 m water depth as indicated by various biogenous particles. Small amounts of shallow water particles in the autochthonous layers indicate a supplay from shallow water, which probably occured b ythe mechanism of "particle by particle supply". None of the three cores indicates upwelling influence, although occanographers found intense upwelling in the area of the Banc d'Arguin. The Holocene climate in that area probably has been arid, small variations in terrigenous matter composition and grain size in the Early Holocene might be due to decreased wind strength or to an increase in rain fall. The Peak Glacial section (14,000-22,000 y. B.P.) of the deepest core 88 indicates a very much intensified eolian silt supply and an additional bottom supply of quartz sand In the interval 22,000-36,000 y. B.P. wind strength decreased, but probably no increase in humidity occurred. So this area in about 19° 40' N had an arid climate in the Late Holocene and in the Peak Glacial. The fragmentation of planktonic foraminifers and the abundance of aragonitic tests of pteropods in core 88 indicate an Early Holocene (8330 y. B.P.) preservation spike. Two minima in fragmentation correlated to maxima in pteropod content at about 15,700 and 21,000 y. B.P. are correlated to maxima in shallow water supply and thus do not reflect preservation conditions, but only lateral supply from the carbonate dissolution minimum zone in about 300 m water depth.
Resumo:
Seven cores from the West African continental margin in 12-18° N have been investigated by means of a coarse fraction analysis. Four of the seven cores contain allochthonous material: turbidites and debris flow deposits. The source of the allochthonous material is in about 300-600 m water depth. The age of the slide induced debris flow deposits is at the end of oxygen isotope stage 2. One debris flow deposit is covered by a turbidite (core GIK13211-1). The turbidites in the deep-sea core GIK13207-3 originate from river-influenced sediments from the West-African continental margin, whereas the autochthonous sequences are influenced by volcanic material from the Cape Verde Islands. Particle by particle supply from upper slope areas has been found in all four cores from the continental slope. Current sorting occurs on the submarine diapir (core GIK13289-3), whereas core GIK13291-1 on the NW-flanc, 200 m below core GIK13289-3, has no current sorting, except for stage 1 and parts of stage 5. The current sorting is reflected by parallel variations of median diameters of whole tests and of fragments of planktonic foraminifers, by higher median diameters of foraminifers on top of the diapir, by reduced accumulation rates and increased sand fraction percentages in core GIK13289-3 compared to core GIK13291-1. The Late Quarternary climatic history of the West-African near coastal area (12-18° N) has been redrawn: - in oxygen isotope stage 1 a humid climate is found in 12-18° N (This "humid impression" in 18° N, which is actually an arid area, is due to the poleward directed undercurrent, which transports Senegal river material to the north). - in oxygen isotope stage 2 an arid climate existed in 14-18° N, whereas in 12° N river discharfe persisted. But within stage 2 dune formation occured in 12° N on the (dry) shelf, additionally to fluviatile sediment input. - Older periods are preserved in autochthonous sediments of core GIK13289-3 and GIK13291-1, where oxygen stage 3,5 and 7 (the latter only in core GIK13289-3 present) show a humid climate (as well as in stage 5 of core GIK13255-3), interrupted by short arid intervals in core GIK12389-3, and stage 4 and 6 show an arid climate, interrupted by short humid periods The allochthonous stage 5 sediment in core GIK13211-1 also reflects a humid climate. The dissolution of planktonic foraminifers is strongest in th eLate Holocene and shows a minimum in the early Holocene, where also pteropods are preserved. The degree of carbonate dissolution is related mainly to the fine matter content (< 63 µm) whereas water depth is a less decisvive factor.
Resumo:
During two Antarctic field seasons, western Dronning Maud Land and eastern Coats Land were covered by airborne radio-echo sounding surveys, conducted in combination with magnetic and gravity measurements along the 50 NW-SE-directed tracks, totaling about 11200 km and spaced 20 km apart. The data were collected in analogue form and then processed to compile ice surface, ice thickness and bedrock topography maps in I : 2 500 000 scale which gave a new and/or more detailed information on the region than previous compilations. The maps show that western Dronning Maud Land is dominated by a large mountainous area with altitudes up to 2800 m including rock outcrops of Annandagstoppane, Borgmassivet, Kirwanveggen and Heimefrontfjella. Upland terrains of Vestfjella and Mannefallknausane have an isolated position and are surrounded by a plain with bedrock depressions of 600 m deep below sea level. A narrow strip of north-eastern Coats Land studied by radio-echo soundings exhibits a smooth subice relief with altitudes close to sea level. The structural style of bedrock topography was mostly determined by extensional tectonics.
Resumo:
The huge ice shelves in West Antarctica -the Ross and Filchner/Ronne Ice Shelves- habe probably extended out on th continental shelf during the late Wisconsin (Stuiver et al., 1981). Previous discussions, which have focused on the Ross Sea, have suggested (1) that the ice extended across the whole continental shelf (Denton et al., 1975; Kellog et al., 1979, doi:10.1130/0091-7613(1979)7<249:LQEOTW>2.0.CO;2) or (2) that there was only a minor ecpansion (Drewry, 1979). Here we present sedimentological data from the Weddel Sea which suggests that a late Wisconsin grounded ice sheet extended to the shelfe edge. The evidence includes a recent thicker ice in Ellsworth Mountains at the head of the Filchner/Ronne Ice Shelf (Rutford et al., 1980). This thickening would lead to an expansion of the inland ice sheet over the continental shelf, filling up the Weddell Sea embayment.
Resumo:
Molybdenum and vanadium were analysed in 9 scediment cores recovered from the continental slope and rise off NW Africa. Additionall chemical and sedimentological parameters as well as isotope stage boundaries were available for the same core profiles from other investigations. Molybdenum, ranging between <1 and 10 ppm, occurs in two associateions, either with organic carbon and sulphides in sediments with reducing conditions or with Mn oxides in oxidized near-surface core sections. Highest values (between 4 and 10 ppm Mo) are found in sulphide-rich core sections deposited during glacial times in a core from 200 m water depth. The possibility of anoxic near-bottom water conditions prevailing at thhis site during certain glacial intervals is discussed. In oxidized near-surface core sections, the diagenetic mobility of Mo becomes evident from strong Mo enrichment together with Mn oxides (values up to 4 ppm Mo). This enrichment is probably due to coprecipitation and/or adsorption of Mo from interstitial water to the diagenetically forming Mn oxides. The close relation between Mo and Corg results in strongly covarying sedimentation rates in both components reaching up to 10 times the rates in glacial compared to interglacial core sections. Vanadium (values between 20 and 100 ppm) does not show clear relations to climate and near-bottom or sediment milieu. It occurs mainly bound to the fine grained terrigenous fraction, associated with aluminium silicates (clay minerals) and iron oxides. Additionally positive covariation of vanadium with phosphorus in most core profiles suggest that some V may be bound to phosphates.
Resumo:
This paper reports the results of a preliminary palaeomagnetic investigation of the Admiralty Intrusives complex of northern Victoria Land, Antarctica. The samples were collected at Mt. Supernal and Inferno Peak, two pinions mainly formed of granodiorite and minor tonalite and emplaced at ab. 350 Ma at a high crustal level, as shown by amphibole geobarometric data and occurrence of miarolitic cavities. Microprobe and isothermal remanence analyses showed that magnetite. characterized by low coercivity and Curic point in the range 550-570 °C is the only primary ferromagnetic mineral. Stepwise thermaldemagnetization succeeded in isolatingamagnetization component. stable up to 530 °C. The virtual geomagnetic poles (VGPs) of the two plutons are different. That of Inferno Peak is consistent with the Australian palaeopoles of late Devonian-early Carboniferous age, whereas the location of the Mt. Supernal VGP probably results from the tectonic activity which affected the Ross Sea region during the Cenozoic.
Resumo:
A. Continental slope sediments off Spanish-Sahara and Senegal contain up to 4% organic carbon and up to 0.4% total nitrogen. The highest concentrations were found in sediments from water depths between 1000 and 2000 m. The regional and vertical distribution of organic matter differs significantly. Off Spanish-Sahara the organic matter content of sediment deposited during glacial times (Wuerm, Late Riss) is high whereas sediments deposited during interglacial times (Recent, Eem) are low in organic matter. Opposite distribution was found in sediments off Senegal. The sediments contain 30 to 130 ppm of fixed nitrogen. In most sediments this corresponds to 2-8 % of the total nitrogen. Only in sediments deposited during interglacial times off Spanish-Sahara up to 20 % of the total nitrogen is contained as inorganically bound nitrogen. Positive correlations of the fixed nitrogen concentrations to the amounts of clay, alumina, and potassium suggest that it is primarily fixed to illites. The amino acid nitrogen and hexosamine nitrogen account for 17 to 26 % and 1.3 to 2.4 %, respectively of the total nitrogen content of the sediments. The concentrations vary between 200 and 850 ppm amino acid nitrogen and 20 to 70 ppm hexosamine nitrogen, both parallel the fluctiations of organic matter in the sediment. Fulvic acids, humic acids, and the total organic matter of the sediments may be clearly differentiated from one another and their amino acid and hexosamine contents and their amino acid composition: a) Fulvic acids contain only half as much amino acids as humic acids b) The molar amino acid/hexosamine ratios of the fulvic acids are half those of the humic acids and the total organic matter of the sediment c) The amino acid spectra of fulvic acids are characterized by an enrichment of aspartic acid, alanine, and methionine sulfoxide and a depletion of glycine, valine, isoleucine, leucine, tyrosine, phenylalanine, lysine, and arginine compared to the spectra of the humic acids and those of the total organic matter fraction of the sediment. d) The amino acid spectra of the humic acids and those of the total organic matter fraction of the sediments are about the same with the exception that arginine is clearly enriched in the total organic matter. In general, as indicated by the amino compounds humic acids resemble closer the total organic matter composition than the low molecular fulvic acids do. This supports the general idea that during the course of diagenesis in reducing sediments organic matter stabilizes from a fulvic-like structure to humic-like structure and finally to kerogen. The decomposition rates of single aminio acids differ significantly from one another. Generally amino acids which are preferentially contained in humic acids and the total organic matter fraction show a smaller loss with time than those preferably well documented in case of the basic amino acids lysine and arginine which- although thermally unstable- are the most stable amino acids in the sediments. A favoured incorporation of these compounds into high molecular substances as well as into clay minerals may explain their relatively high "stability" in the sediment. The nitrogen loss from the sediments due to the activity of sulphate-reducing bacteria amounts to 20-40 % of the total organic nitrogen now present. At least 40 % of the organic nitrogen which is liberated by sulphate-reducing bacteria can be explained ny decomposition of amino acids alone. B. Deep-sea sediments from the Central Pacific The deep-seas sediments contain 1 to 2 orders of magnitude less organic matter than the continental slope sediments off NW Africa, i.e. 0.04 to 0.3 % organic carbon. The fixed nitrogen content of the deep-sea sediments ranges from 60 to 270 ppm or from 20 to 45 % of the total nitrogen content. While ammonia is the prevailing inorganic nitrogen compound in anoxic pore waters, nitrate predominates in the oxic environment of the deep-sea sediments. Near the sediment/water interface interstital nitrate concentrations of around 30 µg-at. N/l were recorded. These generally increase with sediment depth by 10 to 15 µg-at. NO3- N/l. This suggests the presence of free oxygen and the activity of nitrifying bacteria in the interstitial waters. The ammonia content of the interstitial water of the oxic deep-sea sediments ranges from 2 to 60 µg-at. N/l and thus is several orders of magnitude less than in anoxic sediments. In contrast to recorded nitrate gradients towards the sediments/water interface, there are no ammonia concentration gradients. However, ammonia concentrations appear to be characteristic for certain regional areas. It is suggested that this regional differentiation is caused by ion exchange reactions involving potassium and ammonium ions rather than by different decomposition rates of organic matter. C. C/N ratios All estimated C/N ratios of surface sediments vary between 3 and 9 in the deep-sea and the continental margin, respectively. Whereas the C/N ratios generally increase with depth in the sediment cores off NW Africa they decrease in the deep-sea cores. The lowest values of around 1.3 were found in the deeper sections of the deep-sea cores, the highest of around 10 in the sediments off NW Africa. The wide range of the C/N ratios as well as their opposite behaviour with increasing sediment depth in both the deep-sea and continental margin sediment cores, can be attributed mainly to the combination of the following three factors: 1. Inorganic and organic substances bound within the latticed of clay minerals tend to decrease the C/N ratios. 2. Organic matter not protected by absorption on the clay minerals tends to increase C/N ratios 3. Diagenetic alteration of organic matter by micro-organisms tends to increase C/N ratios through preferential loss of nitrogen The diagenetic changes of the microbially decomposable organic matter results in both oxic and anoxic environments in a preferential loss of nitrogen and hence in higher C/N ratios of the organic fraction. This holds true for most of the continental margin sediments off NW Africa which contain relatively high amounts of organic matter so that factors 2 and 3 predominate there. The relative low C/N ratios of the sediments deposited during interglacial times off Spanish-Sahara, which are low in organic carbon, show the increasing influence of factor 1 - the nitrogen-rich organic substances bound to clay minerals. In the deep-sea sediments from the Central Pacific this factor completely predominates so that the C/N rations of the sediments approach that of the substance absorbed to clay minerals with decreasing organic matter content. In the deeper core sections the unprotected organic matter has been completely destroyed so that the C/N ratios of the total sediments eventually fall into the same range as those of the pure clay mineral fraction.
Resumo:
On "Meteor" cruise 30 (1973) 22 piston-cores were collected off Sierra Leone from water-depths between about 5000 m (Sierra Leone Basin) and 500 m (upper continental slope) with the objective to study the sediment composition and age as well as processes of sedimentation on the continental slope in a tropical humid region. Granulometric analysis and determinations of the carbonate contents of the sediment samples were carried out, as well as qualitative and quantitative analysis of the components of the grain size fractions > 63 µm and of the planktonic and benthonic foraminifera > 160 µm. Presently, the cold Canary Current influences the composition of the planktonic foraminifera within the northwestern area of investigation (profile A), whereas the planktonic fauna of the eastern area (profile C) seems to be truly tropical. In all Quaternary sediments from the continental slope off Sierra Leone, species of Globorotalia are less abundant than in truly pelagic sediments. For that reason, the zonation of the Pleistocene sediments based on the presence or absence of Globorotalia cultrata does not always agree with the climatic changes reflected in the sediments. Concerning past climates better results can be obtained by using the changes in percentage abundances of Globigerina sp. sp. and Globigerinoides sp. sp. as indicators for cool and warm temperatures. The Tertiary sediments contain a pelagic foraminiferal assemblage. In the Holocene sediments the benthonic foraminifera do not only serve as good paleodepth indicators, but their communities are also restricted to defined water masses, which change their positions in accordance with climatic changes. Thus, Cassidulina carinata in the area of investigation is an excellent indicator for sediments deposited during times, which were cooler than today; this is true for all cores from the continental slope off Sierra Leone independent of water-depth although this species presently abounds at water-depths around 600 m. The cores from the continental rise and from the Sierra Leone Basin (M30-261, M30-146, M30-147) were deposited below the calcium carbonate compensation depth. Only small sections of the cores consist of the original carbonate-free sediments, whereas the main part of the sediment column is redeposited material, rich in foraminifera, which normally live on the upper continental slope, or even on the shelf. From these cores only M30-261 can be subdivided into biostratigraphic zones ranging from zone V to zone Y. In all cores from the middle and upper continental slope of the eastern area of investigation (profile C; KL 230, 209-204) and in cores KL 183 and KL 184 from the northwestern area (profile A) we observed an undisturbed succession of sediments from the biostratigraphic zones X (partly), Y and Z. All cores from the central area (M30-181, M30-182, M30-262 to 264) and M30-187 from the upper slope of profile A show variable hiatuses in the sedimentary record. Locally, high velocity bottom currents were probably responsible for erosion, nondeposition or minimal sedimentation rates. These currents might have been initiated partly by the somewhat exposed position of this part of the continental slope, where the shelf edge bends from a northwest towards an eastern direction, and partly by very young tectonic movements. Fracture zones with vertically displaced fault blocs are frequent at Sierra Leone continental margin. According to seismic measurements by McMaster et al. (1975) the sites of the central area are located on an uplifted fault bloc explaining the reduced sediment rates or erosion. Unlike the central area, the eastern area (profile C) is situated on a downfaulted bloc with high sediment rates. The sediments from the cores of profile B as well as the turbiditic deep-sea sediments were deposited under a higher flow regime; therefore they are coarser than the extremely fine-grained sediments of the cores from profile C. Since the sand fraction (> 63 µm) is mainly composed of foraminifera, besides pteropods and light-colored fecal pellets, the carbonate content increases with the increasing percentage of the coarse grain fraction. Higher concentrations of quartz were only observed in core sections with considerable carbonate dissolution (mainly in the X-Zone), and, in general, in all sediments from the eastern area with higher terrigenous input including larger concentration of mica. Especially during times transitional between glacials and interglacials (or interstadials) the bottom currents were intensified. The percentages of coarse fraction and carbonate increase with increasing current velocities. Calcium carbonate dissolution becomes important in water depths > 3500 m. During cooler times the lysokline is depressed. Light-colored fecal pellets were redeposited from Late Neogene sediments (M30-187, M30-181). In the area of investigation they occur in the Holocene and mainly the Pleistocene sediments of the cores from the northwestern and central area because only here Tertiary sediments have been eroded at the uppermost continental slope. In the central area there are at least two periods of non-sedimentation and/or erosion which can be confined as being (1) not older than middle Pliocene and not younger than zone V and (2) younger than zone W. The local character of the erosion is documented by the fact that a complete Late Quaternary section is present in the cores of the northwestern and eastern area, each within less than 100 km from incomplete cores from the central area.
Resumo:
The studies described here base mainly on sedimentary material collected during the "Indian Ocean Expedition" of the German research vessel "Meteor" in the region of the Indian-Pakistan continental margin in February and March 1965. Moreover,samples from the mouth of the Indus-River were available, which were collected by the Pakistan fishing vessel "Machhera" in March 1965. Altogether, the following quantities of sedimentary material were collected: 59.73 m piston cores. 54.52 m gravity cores. 33 box grab samples. 68 bottom grab samples Component analyses of the coarse fraction were made of these samples and the sedimentary fabric was examined. Moreover, the CaCO3 and Corg contents were discussed. From these investigations the following history of sedimentation can be derived: Recent sedimentation on the shelf is mainly characterized by hydrodynamic processes and terrigenous supply of material. In the shallow water wave action and currents running parallel to the coast, imply a repeated reworking which induces a sorting of the grains and layering of the sediments as well as a lack of bioturbation. The sedimentation rate is very high here. From the coast-line down to appr. 50 m the sediment becomes progressively finer, the conditions of deposition become less turbulent. On the outer shelf the sediment is again considerably coarser. It contains many relicts of planktonic organisms and it shows traces of burrowing. Indications for redeposition are nearly missing, a considerable part of the fine fraction of the sediments is, however, whirled up and carried away. In wide areas of the outer shelf this stirring has gained such a degree that recent deposits are nearly completely missing. Here, coarse relict sands rich in ooids are exposed, which were formed in very shallow stirred water during the time when the sea reached its lowest level, i.e. at the turn of the Pleistocene to the Holocene. Below the relict sand white, very fine-grained aragonite mud was found at one location (core 228). This aragonite mud was obviously deposited in very calm water of some greater depth, possibly behind a reef barrier. Biochemic carbonate precipitation played an important part in the formation of relict sands and aragonite muds. In postglacial times the relict sands were exposed for long periods to violent wave action and to areal erosion. In the present days they are gradually covered by recent sediments proceeding from the sides. On the continental margin beyond the shelf edge the distribution of the sediments is to a considerable extent determined by the morphology of the sea bottom. The material originating from the continent and/or the shelf, is less transported by action of the water than by the force of gravity. Within the range of the uppermost part of the continental slope recent sedimentation reaches its maximum. Here the fine material is deposited which has been whirled up in the zone of the relict sands. A laminated fine-grained sediment is formed here due to the very high sedimentation rate as well as to the extremely low O2-content in the bottom water, which prevents life on the bottom of the sea and impedes thus also bioturbation. The lamination probaly reflects annual variation in deposition and can be attributed to the rhythm of the monsoon with its effects on the water and the weather conditions. In the lower part of the upper continental slope sediments are to be found which show in varying intensity, intercalations of fine material (silt) from the shelf, in large sections of the core. These fine intercalations of allochthonous material are closely related to the autochthonous normal sediment, so that a great number of small individual depositional processes can be inferred. In general the intercalations are missing in the uppermost part of the cores; in the lower part they can be met in different quantities, and they reach their maximum frequency in the upper part of the lower core section. The depositions described here were designated as turbid layer sediments, since they get their material from turbid layers, which transport components to the continental slope which have been whirled up from the shelf. Turbidites are missing in this zone. Since the whole upper continental slope shows a low oxygen-content of the bottom water the structure of the turbid layer sediments is more or less preserved. The lenticular-phacoidal fine structure does, however, not reflect annual rhythms, but sporadic individual events, as e.g. tsunamis. At the lower part of the continental slope and on the continental rise the majority of turbidites was deposited, which, during glacial times and particularly at the beginning of the post-glacial period, transported material from the zone of relict sands. The Laccadive Ridge represented a natural obstacle for the transport of suspended sediments into the deep sea. Core SIC-181 from the Arabian Basin shows some intercalations of turbidites; their material, however, does not originate from the Indian Shelf, but from the Laccadive Ridge. Within the range of the Indus Cone it is surprising that distinct turbidites are nearly completely missing; on the other hand, turbid layer sediments are to be found. The bottom of the sea is showing still a slight slope here, so that the turbidites funneled through the Canyon of the Swatch probably rush down to greater water depths. Due to the particularly large supply of suspended material by theIndus River the turbid layer sediments show farther extension than in other regions. In general the terrigenous components are concentrated on the Indus Cone. It is within the range of the lower continental slope that the only discovery of a sliding mass (core 186) has been located. It can be assumed that this was set in motion during the Holocene. During the period of time discussed here the following development of kind and intensity of the deposition of allochthonous material can be observed on the Indian-Pakistan continental margin: At the time of the lowest sea level the shelf was only very narrow, and the zone in which bottom currents were able to stir up material by oscillating motion, was considerably confined. The rivers flowed into the sea near to the edge of the shelf. For this reason the percentage of terrigenous material, quartz and mica is higher in the lower part of many cores (e.g. cores 210 and 219) than in the upper part. The transition from glacial to postglacial times caused a series of environmental changes. Among them the rise of the sea level (in the area of investigation appr. 150 m) had the most important influence on the sedimentation process. In connection with this event many river valleys became canyons, which sucked sedimentary material away from the shelf and transported it in form of turbidites into the deep sea. During the rise of the sea level a situation can be expected with a maximum area of the comparatively plane shelf being exposed to wave action. During this time the process of stirring up of sediments and formation of turbid layers will reach a maximum. Accordingly, the formation of turbidites and turbid layer sediments are most frequent at the same time. This happened in general in the older polstglacial period. The present day high water level results in a reduced supply of sediments into the canyons. The stirring up of sediments from the shelf by wave action is restricted to the finest material. The missing of shelf material in the uppermost core sections can thus be explained. The laminated muds reflect these calm sedimentation conditions as well. In the southwestern part of the area of investigation fine volcanic glass was blown in during the Pleistocene, probably from the southeast. It has thus become possible to correlate the cores 181, 182, 202. Eolian dust from the Indian subcontinent represents probably an important component of the deep sea sediments. The chemism of the bottom as well as of the pore water has a considerable influence on the development of the sediments. Of particular importance in this connection is a layer with a minimum content of oxygen in the sea water (200-1500 m), which today touches the upper part of the continental slope. Above and beyond this oxygen minimum layer somewhat higher O2-values are to be observed at the sea bottom. During the Pleistocene the oxygen minimum layer has obviously been locatedin greater depth as is indicated by the facies of laminated mud occuring in the lower part of core 219. The type of bioturbation is mainly determined by the chemism. Moreover, the chemism is responsible for a considerable selective dissolution, either complete or partial, of the sedimentary components. Within the range of the oxygen minimum layer an alkaline milieu is developed at the bottom. This causes a complete or partial dissolution of the siliceous organisms. Here, bioturbation is in general completely missing; sometimes small pyrite-filled burrowing racks are found. In the areas rich in O2 high pH-values result in a partial dissolution of the calcareous shells. Large, non-pyritized burrowing tracks characterize the type of bioturbation in this environment. A study of the "lebensspuren" in the cores supports the assumption that, particularly within the region of the Laccadive Basin, the oxygen content in the bottom sediments was lower than during the Holocene. This may be attributed to a high sedimentation rate and to a lower O2-content of the bottom water. The composition of the allochthonous sedimentary components, detritus and/or volcanic glass may locally change the chemism to a considerable extent for a certain time; under such special circumstances the type of bioturbation and the state of preservation of the components may be different from those of the normal sediment.
Resumo:
On the basis of new bulk major and trace element (including REE) as well as Sm-Nd and Rb-Sr isotope data, used in conjunction with available geochronological data, a post-tectonic mafic igneous province and four groups of pre- to syntectonic amphibolite are distinguished in the polymetamorphic Maud Belt of western Dronning Maud Land, East Antarctica. Protoliths of the Group 1 amphibolites are interpreted as volcanic arc mafic intrusions with Archaean to Palaeoproterozoic Nd model ages and depletion in Nb and Ta. Isotopic and lithogeochemical characteristics of this earliest group of amphibolite indicate that the Maud Belt was once an active continental volcanic arc. The most likely position of this arc, for which a late Mesoproterozoic age (c. 1140 Ma) is indicated by available U-Pb single-zircon age data, was on the southeastern margin of the Kaapvaal-Grunehogna Craton. The protoliths of Group 2 amphibolites are attributed to the 1110 Ma Borgmassivet-Umkondo thermal event on the basis of comparable Nd model ages and trace element distributions. Group 3 amphibolite protoliths are characterized by mid-ocean ridge basalt-type REE patterns and low Th/Yb ratios, and they are related to Neoproterozoic extension. Group 4 amphibolite protoliths are distinguished by high Dy/Yb ratios and are attributed to a phase of syntectonic Pan-African magmatism as indicated by Rb-Sr isotope data.
Resumo:
Downcore oxygen and carbon stable isotope records of planktonic and benthic foraminifers and fine-fraction carbonate from the southern high latitudes provide critical paleohydrographic constraints on the evolution of the Southern Ocean climate. In particular, the potential effects of an intensified Antarctic Circumpolar Current on the thermal isolation and cooling of the southern high latitudes, production of cold deep waters, and, ultimately, accumulation of continental ice on Antarctica in the middle Miocene are matters of interest. Using sediment materials from Ocean Drilling Program Leg 189 Sites 1170 and 1172 off Tasmania, Ennyu and Arthur (2004, doi:10.1029/151GM13) established the surface- and deepwater stable isotope records in the Southern Ocean across the middle Miocene event of the east Antarctic ice sheet expansion and discussed the paleoclimate proxy records in terms of the thermal evolution of the southern high latitudes and its effect on deepwater circulation. This report provides data tables and other supporting information relevant to discussions presented in Ennyu and Arthur (2004, doi:10.1029/151GM13). Items included in this report are (1) the oxygen and carbon stable isotope data measured on the Miocene bulk fine-fraction (i.e., <63 µm, primarily polyspecific nannofossil assemblage) carbonate and planktonic and benthic foraminifers from Holes 1170A and 1172A and (2) the Miocene depth-age models for the two sites.
Resumo:
Synthetic seismograms provide a crucial link between lithologic variations within a drill hole and reflectors on seismic profiles crossing the site. In essence, they provide a ground-truth for the interpretation of seismic data. Using a combination of core and logging data, we created synthetic seismograms for Ocean Drilling Program Sites 1165 and 1166, drilled during Leg 188, and Site 742, drilled during Leg 119, all in Prydz Bay, Antarctica. Results from Site 1165 suggest that coring penetrated a target reflector initially thought to represent the onset of drift sedimentation, but the lithologic change across the boundary does not show a change from predrift to drift sediments. The origin of a shallow reflector packet in the seismic line across Site 1166 and a line connecting Sites 1166 and 742 was resolved into its constituent sources, as this reflector occurs in a region of large-scale, narrowly spaced impedance changes. Furthermore, Site 1166 was situated in a fluvio-deltaic system with widely variable geology, and bed thickness changes were estimated between the site and both seismic lines.
Resumo:
To date, understanding of ice sheet retreat within Pine Island Bay (PIB) following the Last Glacial Maximum (LGM) was based on seven radiocarbon dates and only fragmentary seafloor geomorphic evidence. During the austral summer 2009-2010, restricted sea ice cover allowed for the collection of 27 sediment cores from the outer PIB trough region. Combining these cores with data from prior cruises, over 133 cores have been used to conduct a detailed sedimentological facies analysis. These results, augmented by 23 new radiocarbon dates, are used to reconstruct the post-LGM deglacial history of PIB. Our results record a clear retreat stratigraphy in PIB composed of, from top to base; terrigenous sandy silt (distal glacimarine), pebbly sandy mud (ice-proximal glacimarine), and till. Initial retreat from the outer-continental shelf began shortly after the LGM and before 16.4 k cal yr BP, as a likely response to rising sea level. Bedforms in outer PIB document episodic retreat in the form of back-stepping grounding zone wedges and are associated with proximal glacimarine sediments. A sub-ice shelf facies is observed in central PIB and spans ~12.3-10.6 k cal yr BP. It is possible that widespread impingement of warm water onto the continental shelf caused an abrupt and widespread change from sub-ice shelf sedimentation to distal glacimarine sedimentation dominated by widespread dispersal of terrigenous silt between 7.8 and 7.0 k cal yr BP. The final phase of retreat ended before ~1.3 k cal yr BP, when the grounding line migrated to a location near the current ice margin.