311 resultados para concentration (composition)
Resumo:
In this paper, we present new detailed data on the trace metal content of more than 200 shallow polar snow samples collected at various depths in numerous locations mainly in Antarctica and Greenland. The samples were collected in ultraclean plexiglass or teflon tubes from the walls of hand dug pits, using stringent contamination free techniques controlled by severe blank tests. They were then analysed for Na, Mg, K, Ca, Fe, Al, Mn, Pb, Cd, Cu, Zn and Ag in clean room conditions by flameless atomic absorption, after a preconcentration step (by non boiling evaporation in teflon bulbs) which includes dissolving any solid particles by concentrated nitric and hydrofluoric acids. The overall precision on the measured concentrations is of the order of 10 % for all the metals except Pb (20 %) and Cd (35 %), using 95 % confidence limits. The data obtained are compared with those published previously in the literature. Part of these previous data are shown to be erroneously too high, probably because of con-tamination problems both during field collection and analysis.
Resumo:
Organic carbon occluded in diatom silica is assumed to be protected from degradation in the sediment. d13C from diatom carbon (d13C(diatom)) therefore potentially provides a signal of conditions during diatom growth. However, there have been few studies based on d13C(diatom). Numerous variables can influence d13C of organic matter in the marine environment (e.g., salinity, light, nutrient and CO2 availability). Here we compare d13C(diatom) and d13C(TOC) from three sediment records from individual marine inlets (Rauer Group, East Antarctica) to (i) investigate deviations between d13C(diatom) and d13C(TOC), to (ii) identify biological and environmental controls on d13C(diatom) and d13C(TOC), and to (iii) discuss d13C(diatom) as a proxy for environmental and climate reconstructions. The records show individual d13C(diatom) and d13C(TOC) characteristics, which indicates that d13C is not primarily controlled by regional climate or atmospheric CO2 concentration. Since the inlets vary in water depths offsets in d13C are probably related to differences in water column stratification and mixing, which influences redistribution of nutrients and carbon within each inlet. In our dataset changes in d13C(diatom) and d13C(TOC) could not unequivocally be ascribed to changes in diatom species composition, either because the variation in d13C(diatom) between the observed species is too small or because other environmental controls are more dominant. Records from the Southern Ocean show depleted d13C(diatom) values (1-4 per mil) during glacial times compared to the Holocene. Although climate variability throughout the Holocene is low compared to glacial/interglacial variability, we find variability in d13C(diatom), which is in the same order of magnitude. d13C of organic matter produced in the costal marine environment seems to be much more sensitive to environmental changes than open ocean sites and d13C is of strongly local nature.
Resumo:
Molecular biological methods were used to investigate the microbial diversity and community structure in intertidal sandy sediments near the island of Sylt (Wadden Sea) at a site which was characterized for transport and mineralization rates in de Beer et al., (2005, hdl:10013/epic.21375). The sampling was performed during low tide in the middle of the flat, approximately 40 m in the offshore direction from the high water line on October 6, 1999, March 7, 2000, and July 5, 2000. Two parallel cores were collected from each season for molecular analyses. Within 2 h after sampling the sediment cores were sub-sampled and fixed in formaldehyde for FISH analysis. The cells were hybridized, stained with 4',6'-diamidino-2-phenylindole (DAPI) and microscopically counted as described previously [55]. Details of probes and formamide concentrations which were used are shown in further details. Counts are reported as means calculated from 10-15 randomly chosen microscopic fields corresponding to 700-1000 DAPI-stained cells. Values were corrected for the signals counted with the probe NON338. Fluorescence in situ hybridization (FISH)with group-specific rRNA-targeted oligonucleotide probes were used to characterize the microbial community structure over depth (0-12 cm) and seasons (March, July, October). We found high abundances of bacteria with total cell numbers up to 3×109 cells ml-1 and a clear seasonal variation, with higher values in July and October versus March. The microbial community was dominated by members of the Planctomycetes, the Cytophaga/Flavobacterium group, Gammaproteobacteria, and bacteria of the Desulfosarcina/Desulfococcus group. The high abundance (1.5×10**7 - 1.8×10**8 cells/ml accounting for 3-19% of all cells) of presumably aerobic heterotrophic polymer-degrading planctomycetes is in line with the high permeability, deep oxygen penetration, and the high rates of aerobic mineralization of algal biomass measured in the sandy sediments by de Beer et al., (2005, hdl:10013/epic.21375). The high and stable abundance of members of the Desulfosarcina/Desulfococcus group, both over depth and season, suggests that these bacteria may play a more important role than previously assumed based on low sulfate reduction rates in parallel cores de Beer et al., (2005).
Resumo:
We report dissolved sulfide sulfur concentrations and the sulfur isotopic composition of dissolved sulfate and sulfide in pore waters from sediments collected during Ocean Drilling Program Leg 204. Porewater sulfate is depleted rapidly as the depth to the sulfate/methane interface (SMI) occurs between 4.5 and 11 meters below seafloor at flank and basin locations. Dissolved sulfide concentration reaches values as high as 11.3 mM in Hole 1251E. Otherwise, peak sulfide concentrations lie between 3.2 and 6.1 mM and occur immediately above the SMI. The sulfur isotopic composition of interstitial sulfate generally becomes enriched in 34S with increasing sediment depth. Peak d34S-SO4 values occur just above the SMI and reach up to 53.1 per mil Vienna Canyon Diablo Troilite (VCDT) in Hole 1247B. d34S-Sigma HS values generally parallel the trend of d34S-SO4 values but are more depleted in 34S relative to sulfate, with values from -12.7 per mil to 19.3 per mil VCDT. Curvilinear sulfate profiles and carbon isotopic composition of total dissolved carbon dioxide at flank and basin sites strongly suggest that sulfate depletion is controlled by oxidation of sedimentary organic matter, despite the presence of methane gas hydrates in underlying sediments. Preliminary data from sulfur species are consistent with this interpretation for Leg 204 sediments at sites not located on or near the crest of Hydrate Ridge.
Resumo:
Arctic sea-ice decline is expected to have a significant impact on Arctic marine ecosystems. Ice-associated fauna play a key role in this context because they constitute a unique part of Arctic biodiversity and transmit carbon from sea-ice algae into pelagic and benthic food webs. Our study presents the first regional-scale record of under-ice faunal distribution and the environmental characteristics of under-ice habitats throughout the Eurasian Basin. Sampling was conducted with a Surface and Under-Ice Trawl, equipped with a sensor array recording ice thickness and other physical parameters during trawling. We identified 2 environmental regimes, broadly coherent with the Nansen and Amundsen Basins. The Nansen Basin regime was distinguished from the Amundsen Basin regime by heavier sea-ice conditions, higher surface salinities and higher nitrate + nitrite concentrations. We found a diverse (28 species) under-ice community throughout the Eurasian Basin. Change in community structure reflected differences in the relative contribution of abundant species. Copepods (Calanus hyperboreus and C. glacialis) dominated in the Nansen Basin regime. In the Amundsen Basin regime, amphipods (Apherusa glacialis, Themisto libellula) dominated. Polar cod Boreogadus saida was present throughout the sampling area. Abrupt changes from a dominance of ice-associated amphipods at ice-covered stations to a dominance of pelagic amphipods (T. libellula) at nearby ice-free stations emphasised the decisive influence of sea ice on small-scale patterns in the surface-layer community. The observed response in community composition to different environmental regimes indicates potential long-term alterations in Arctic marine ecosystems as the Arctic Ocean continues to change.
Resumo:
Analytical data on the basic salt composition in evaporation products of sea (ocean) water and of rain water falling on the central area of the Indian Ocean are examined. Both hot and low-temperature (vacuum) distillation were used. When ocean water evaporates under calm conditions, sea salts in molecular-dispersed state, metamorphosed in the upper boundary layer, enter the atmosphere in addition to water vapor ("salt respiration of the ocean"). Concentration of these salts is about 0.5 mg per liter of water evaporated. Salts also enter the atmosphere from a foam-covered ocean surface as aerosols.
Resumo:
The fixation of dissolved inorganic carbon (DIC) by marine phytoplankton provides an important feedback mechanism on concentrations of CO2 in the atmosphere. As a consequence it is important to determine whether oceanic primary productivity is susceptible to changing atmospheric CO2 levels Among numerous other factors, the acquisition of DIC by microalgae particularly in the polar seas is projected to have a significant effect on future phytoplanktonic production and hence atmospheric CO2 concentrations. Using the isotopic disequilibrium technique the contribution of different carbon species (CO2 and bicarbonate) to the overall DIC uptake and the extent to which external Carbonic Anhydrase (eCA) plays a role in facilitating DIC uptake was estimated. Simultaneous uptake of CO2 and HCO3- was observed in all cases, but the proportions in which different DIC species contributed to carbon assimilation varied considerably between stations. Bicarbonate as well as CO2 could be the major DIC source for local phytoplankton assemblages. There was a positive correlation between the contribution of CO2 to total DIC uptake and ambient concentration of CO2 in seawater suggesting that Southern Ocean microalgae could increase the proportion of CO2 uptake under future high atmospheric CO2 levels. Results will be discussed in view of metabolic costs related to DIC acquisition of Southern Ocean phytoplankton.
Resumo:
Under defined laboratory and field conditions, the investigation of percolating water through soil columns (podsol, lessive and peat) down to groundwater table shows that the main factors which control the chemical characteristics of the percolates are: precipitation, evaporation, infiltration rate, soil type, depth and dissolved organic substances. Evaporation and percolation velocity influences the Na+, SO4**2- and Cl- concentrations. Low percolation velocity leads also to longer percolation times and water logging in less permeable strata, which results in lower Eh-values and higher CO2-concentrations due to low gas exchange with the atmosphere. Ca2+ and Mg2+ carbonate concentration depends on soil type and depth. Metamorphism and decomposition of organic substances involve NO3 reduction and K+, Mg2+, SO4**2-, CO2, Fe2+,3+ transport. The analytical data were evaluated with multi variate statistical methods.
Resumo:
The stable hydrogen isotope composition of lipid biomarkers, such as alkenones, is a promising new tool for the improvement of palaeosalinity reconstructions. Laboratory studies confirmed the correlation between lipid biomarker dD composition (dDLipid), water dD composition (dDH2O) and salinity; yet there is limited insight into the applicability of this proxy in oceanic environments. To fill this gap, we test the use of the dD composition of alkenones (dDC37) and palmitic acid (dDPA) as salinity proxies using samples of surface suspended material along the distinct salinity gradient induced by the Amazon Plume. Our results indicate a positive correlation between salinity and dDH2O, while the relationship between dDH2O and dDLipid is more complex: dDPAM correlates strongly with dDH2O (r2 = 0.81) and shows a salinity-dependent isotopic fractionation factor. dDC37 only correlates with dDH2O in a small number (n = 8) of samples with alkenone concentrations > 10 ng L**-1, while there is no correlation if all samples are taken into account. These findings are mirrored by alkenone-based temperature reconstructions, which are inaccurate for samples with low alkenone concentrations. Deviations in dDC37 and temperature are likely to be caused by limited haptophyte algae growth due to low salinity and light limitation imposed by the Amazon Plume. Our study confirms the applicability of dDLipid as a salinity proxy in oceanic environments. But it raises a note of caution concerning regions where low alkenone production can be expected due to low salinity and light limitation, for instance, under strong riverine discharge.
Resumo:
Phytoplankton community structure and their physiological response in the vicinity of the Antarctic Polar Front (APF; 44°S to 53°S, centred at 10°E) were investigated as part of the ANT-XXVIII/3 Eddy-Pump cruise conducted in austral summer 2012. Our results show that under iron-limited (< 0.3 µmol/m**3) conditions, high total chlorophyll-a (TChl-a) concentrations (> 0.6 mg/m**3) can be observed at stations with deep mixed layer (> 60 m) across the APF. In contrast, light was excessive at stations with shallower mixed layer and phytoplankton were producing higher amounts of photoprotective pigments, diadinoxanthin (DD) and diatoxanthin (DT), at the expense of TChl-a, resulting in higher ratios of (DD+DT)/ TChl-a. North of the APF, significantly lower silicic acid (Si(OH)4) concentrations (< 2 mmol/m**3) lead to the domination of nanophytoplankton consisting mostly of haptophytes, which produced higher ratios of (DD+DT)/TChl-a under relatively low irradiance conditions. The Si(OH)4 replete (> 5 mmol/m**3) region south of the APF, on the contrary, was dominated by microphytoplankton (diatoms and dinoflagellates) with lower ratios of (DD+DT)/TChl-a, despite having been exposed to higher levels of irradiance. The significant correlation between nanophytoplankton and (DD+DT)/TChl-a indicates that differences in taxon-specific response to light are also influencing TChl-a concentration in the APF during summer. Our results reveal that provided mixing is deep and Si(OH)4 is replete, TChl-a concentrations higher than 0.6 mg/m**3 are achievable in the iron-limited APF waters during summer.
Resumo:
Mineralogical and chemical analyses performed on 67 ferromanganese nodules from widely varying locations and depths within the marine environment of the Pacific Ocean indicate that the minor element composition is controlled by the mineralogy and that the formation of the mineral phases is depth dependent. The pressure effect upon the thermodynamics or kinetics of mineral formation is suggested as the governing agent in the depth dependence of the mineralogy. The minor elements, Pb and Co, appear concentrated in the dMnO2 phase, whereas Cu and Ni are more or less excluded from this phase. In the manganites, Pb and Co are relatively low in concentration, whereas Cu and Ni are spread over a wide range of values. The oxidation of Pb and Co from divalent forms in sea water to higher states can explain their concentration in the dMnO2 phase.