613 resultados para brejui epidote


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interareal correlation has been carried out; composition of the deposits has been determined; sections recovered by marine drilling have been compared; reconstructed paleogeographic conditions confirm previous views on Jurassic and Cretaceous sedimentation in the area: 1. Determinate changes of continental and shallow marine mainly sandy Middle Jurassic deposits by sandy-clayey marine ones to the north and west occur. This indicates similar direction of clastic material migration and converse direction of Jurassic marine transgressions. 2. Increase of sand contents in the deposits also to the east and to the southeast indicates an important source of clastic material. It can result from incipience and development of the epiplatform orogen of Novaya Zemlya - Pai-Khoi in the Late Triassic - Early Jurassic. 3. Compositional and facial changes as well as changes in thicknesses of some Early Cretaceous lithologic-stratigraphic complexes indicate fast change of terrigenous material transport from the north to the south - south-east in the Late Valanginian - Hauterivian. Besides within the South Barents Sea region up to the Shtokman area there occurs weak variability in lithologic parameters of Neocomian avandeltaic deposits and turbidites composed of clays, claystones, and clayey siltstones. Correlation of drilling sections from the Shtokman area and from the South Basin of the Barents Sea together with paleotectonic analysis result to the conclusion about significant structure-forming movements in the Late Jurassic - Early Neocomian. During this time there occurred maximal growth of the Shtokman structure and likely of many other structures belonging to the South Basin of the Barents Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineral composition of recent bottom sediments was studied in the White Sea. A single terrigenous-mineralogical province is defined; it is characterized by a mineral association of amphibole, epidote, garnet, and pyroxene. Five regions are assigned in the White Sea in accordance with mineral composition of surface bottom sediments. We argue that granite-metamorphic rock complexes of the Baltic Shield are the main source of recent bottom sediments in the White Sea, while the East European Craton (Russian Platform) plays the secondary role.