668 resultados para Surface Reconstruction
Resumo:
Quantitative and qualitative analyses of planktonic foraminiferal assemblages from 134 core-top sediment samples collected along the western Iberian margin were used to assess the latitudinal and longitudinal changes in surface water conditions and to calibrate a Sea Surface Temperature (SST) transfer function for this seasonal coastal upwelling region. Q-mode factor analysis performed on relative abundances yielded three factors that explain 96% of the total variance: factor 1 (50%) is exclusively defined by Globigerina bulloides, the most abundant and widespread species, and reflects the modern seasonal (May to September) coastal upwelling areas; factor 2 (32%) is dominated by Neogloboquadrina pachyderma (dextral) and Globorotalia inflata and seems to be associated with the Portugal Current, the descending branch of the North Atlantic Drift; factor 3 (14%) is defined by the tropical-sub-tropical species Globigerinoides ruber (white), Globigerinoides trilobus trilobus, and G. inflata and mirrors the influence of the winter-time eastern branch of the Azores Current. In conjunction with satellite-derived SST for summer and winter seasons integrated over an 18 year period the regional foraminiferal data set is used to calibrate a SST transfer function using Imbrie & Kipp, MAT and SIMMAX(ndw) techniques. Similar predicted errors (RMSEP), correlation coefficients, and residuals' deviation from SST estimated for both techniques were observed for both seasons. All techniques appear to underestimate SST off the southern Iberia margin, an area mainly occupied by warm waters where upwelling occurs only occasionally, and overestimate SST on the northern part of the west coast of the Iberia margin, where cold waters are present nearly all year round. The comparison of these regional calibrations with former Atlantic and North Atlantic calibrations for two cores, one of which is influenced by upwelling, reveals that the regional one attests more robust paleo-SSTs than for the other approaches.
Resumo:
We provide a new multivariate calibration-function based on South Atlantic modern assemblages of planktonic foraminifera and atlas water column parameters from the Antarctic Circumpolar Current to the Subtropical Gyre and tropical warm waters (i.e., 60°S to 0°S). Therefore, we used a dataset with the abundance pattern of 35 taxonomic groups of planktonic foraminifera in 141 surface sediment samples. Five factors were taken into consideration for the analysis, which account for 93% of the total variance of the original data representing the regional main oceanographic fronts. The new calibration-function F141-35-5 enables the reconstruction of Late Quaternary summer and winter sea-surface temperatures with a statistical error of ~0.5°C. Our function was verified by its application to a sediment core extracted from the western South Atlantic. The downcore reconstruction shows negative anomalies in sea-surface temperatures during the early-mid Holocene and temperatures within the range of modern values during the late Holocene. This pattern is consistent with available reconstructions.
Resumo:
The Greenland ice sheet is accepted as a key factor controlling the Quaternary glacial scenario. However, the origin and mechanisms of major Arctic glaciation starting at 3.15 Ma and culminating at 2.74 Ma are still controversial. For this phase of intense cooling Ravelo et al. proposed a complex gradual forcing mechanism. In contrast, our new submillennial-scale paleoceanographic records from the Pliocene North Atlantic suggest a far more precise timing and forcing for the initiation of northern hemisphere glaciation (NHG), since it was linked to a 2-3 °C surface water warming during warm stages from 2.95 to 2.82 Ma. These records support previous models, claiming that the final closure of the Panama Isthmus (3.0- ~2.5 Ma induced an increased poleward salt and heat transport. Associated strengthening of North Atlantic Thermohaline Circulation and in turn, an intensified moisture supply to northern high latitudes resulted in the build-up of NHG, finally culminating in the great, irreversible climate crash at marine isotope stage G6 (2.74 Ma). In summary, there was a two-step threshold mechanism that marked the onset of NHG with glacial-to-interglacial cycles quasi-persistent until today.
Resumo:
Lipid biomarker records from sinking particles collected by sediment traps are excellent tools to study the seasonality of biomarker production as well as processes of particle formation and settling, ultimately leading to the preservation of the biomarkers in sediments. Here we present records of the biomarker indices UK'37 based on alkenones and TEX86 based on isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), both used for the reconstruction of sea surface temperatures (SST). These records were obtained from sinking particles collected using a sediment trap moored in the filamentous upwelling zone off Cape Blanc, Mauritania, at approximately 1300 water depth during a four-year time interval between 2003 and 2007. Mass and lipid fluxes are highest during peak upwelling periods between October and June. The alkenone and GDGT records both display pronounced seasonal variability. Sinking velocities calculated from the time lag between measured SST maxima and minima and corresponding index maxima and minima in the trap samples are higher for particles containing alkenones (14-59 m/d) than for GDGTs (9-17 m/d). It is suggested that GDGTs are predominantly exported from shallow waters by incorporation in opal-rich particles. SST estimates based on the UK'37 index faithfully record observed fluctuations in SST during the study period. Temperature estimates based on TEX86 show smaller seasonal amplitudes, which can be explained with either predominant production of GDGTs during the warm season, or a contribution of GDGTs exported from deep waters carrying GDGTs in a distribution that translates to a high TEX86 signal.
Resumo:
Early and Mid-Pleistocene climate, ocean hydrography and ice sheet dynamics have been reconstructed using a high-resolution data set (planktonic and benthic d18O time series, faunal-based sea surface temperature (SST) reconstructions and ice-rafted debris (IRD)) record from a high-deposition-rate sedimentary succession recovered at the Gardar Drift formation in the subpolar North Atlantic (Integrated Ocean Drilling Program Leg 306, Site U1314). Our sedimentary record spans from late in Marine Isotope Stage (MIS) 31 to MIS 19 (1069-779 ka). Different trends of the benthic and planktonic oxygen isotopes, SST and IRD records before and after MIS 25 (~940 ka) evidence the large increase in Northern Hemisphere ice-volume, linked to the cyclicity change from the 41-kyr to the 100-kyr that occurred during the Mid-Pleistocene Transition (MPT). Beside longer glacial-interglacial (G-IG) variability, millennial-scale fluctuations were a pervasive feature across our study. Negative excursions in the benthic d18O time series observed at the times of IRD events may be related to glacio-eustatic changes due to ice sheets retreats and/or to changes in deep hydrography. Time series analysis on surface water proxies (IRD, SST and planktonic d18O) of the interval between MIS 31 to MIS 26 shows that the timing of these millennial-scale climate changes are related to half-precessional (10 kyr) components of the insolation forcing, which are interpreted as cross-equatorial heat transport toward high latitudes during both equinox insolation maxima at the equator.
Resumo:
This work reconstructs Late Quaternary paleoceanographic changes in the western South Atlantic Ocean based on sedimentary core GL-77, recovered from the lower continental slope in the Campos basin, offshore SE Brazil. The studied interval comprises the last 130 ka. Changes in sea surface temperature (SST) and paleoproductivity were estimated using the total planktonic foraminiferal fauna and oxygen isotope analyses. The age model was based on the oxygen isotope record, biostratigraphic datums and AMS 14C dating. It was observed that the Pleistocene/Holocene transition occurs within Globorotalia menardii Biozone Y, and is not coeval with the base of Biozone Z. The range between summer and winter SST estimates is larger during the glacial period compared to interglacials. Three peaks of low SST around 70, 50 - 45 and 20 ka coincided with periods of enhanced SE trade winds. Despite faunal differences between the last interglacial (MIS 5e) and the Holocene, our SST estimates suggest that SSTs did not differ significantly between these intervals.
Resumo:
The Toba volcanic event, one of the largest eruptions during the Quaternary, is documented in marine sediment cores from the northeastern Arabian Sea. On the crest of the Murray Ridge and along the western Indian continental margin, we detected distinct concentration spikes and ash layers of rhyolithic volcanic shards near the marine isotope stage 5-4 boundary with the chemical composition of the "Youngest Toba Tuff". Time series of the Uk'37-alkenone index, planktic foraminiferal species, magnetic susceptibility, and sediment accumulation rates from this interval show that the Toba event occurred between two warm periods lasting a few millennia. Using Toba as an instantaneous stratigraphic marker for correlation between the marine- and ice-core chronostratigraphies, these two Arabian Sea climatic events correspond to Greenland interstadials 20 and 19, respectively. Our data sets thus depict substantial interstadial/stadial fluctuations in sea-surface temperature and surface-water productivity. We show that variable terrigenous (eolian) sediment supply played a crucial role in transferring and preserving the productivity signal in the sediment record. Within the provided stratigraphic resolution of several decades to centennials, none of these proxies shows a particular impact of the Toba eruption. However, our results are additional support that Toba, despite its exceptional magnitude, had only a minor impact on the evolution of low-latitude monsoonal climate on centennial to millennial time scales.
Resumo:
We present centennial records of sea surface and upper thermocline temperatures in Core MD01-2378 from the Timor Sea, which provide new insights into the variability of the Indonesian outflow across the last two glacial terminations. Mg/Ca in Globigerinoides ruber (white s. s.) indicates an overall increase of 3.2 °C in sea surface temperature (SST) over Termination I. Following an early Holocene plateau at 11.3-6.4 ka, SSTs cooled by 0.6 °C during the middle to late Holocene (6.4-0.7 ka). The early Holocene warming occurred in phase with increasing northern hemisphere summer insolation, coinciding with northward displacement of the Intertropical Convergence Zone, enhanced boreal summer monsoon and expansion of the Indo-Pacific Warm Pool. Thermocline temperatures (Pulleniatina obliquiloculata Mg/Ca) gradually decreased from 24.5 to 21.5 °C since 10.3 ka, reflecting intensification of a cool thermocline throughflow. The vertical structure of the upper ocean in the Timor Sea evolved in similar fashion during the Holocene and MIS5e, although the duration of SST plateaux differed (11.3 to 6.4 ka in Termination I and from 129 to 119 ka in Termination II), which was probably due to the more intense northern hemisphere summer insolation during MIS 5e. During both terminations, SST increased simultaneously in the southern high latitudes and the tropical eastern Indian Ocean, suggesting virtually instantaneous atmospheric climate feedbacks between the high and low latitudes.
Resumo:
We reconstructed changes of temperature, salinity, and productivity within the southern Peru-Chile Current during the last 8000 years from a high-resolution sediment core recovered at 41°S using alkenones, isotope ratios of planktic foraminifera, biogenic opal, and organic carbon. Paleotemperatures and paleosalinities reached maximum values at ~5500 years ago and thereafter declined to modern values, whereas paleoproductivity continuously increased throughout the last 8000 years. We ascribe these long-term Holocene trends primarily to latitudinal shifts of the Antarctic Circumpolar Current (ACC). The concurrence with shifts in the position of the Southern Westerlies points to a common response of atmospheric and oceanographic circulation patterns off southern Chile. Millennial- to centennial-scale fluctuations of paleotemperatures and paleosalinities, on the other hand, lag displacements in the position of the Southern Westerlies but reveal a significant correlation to short-term temperature changes in Antarctica, indicating a high-latitude control of the ACC at these timescales.