449 resultados para Rock fabric
Resumo:
The geological history of Filchnerfjella and surrounding areas (2°E to 8°E) in central Dronning Maud Land, East Antarctica, is constructed from metamorphic and igneous petrology, and structural investigations. The geology of Filchner-fjella consists mainly of metamorphic rocks accompanied by intrusive rocks. Two stages of metamorphism can be recognized in this area. The earlier stage metamorphism is defined as a porphyroblast stage (garnet, hornblende, and sillimanite stable), and the later one is recognized as a symplectic stage (orthopyroxene and cordieritestable). Taking metamorphic textures and geothermobarometries into account, the rocks experienced an early high-P/medium-T followed by a low-P and high-T stage. Partial melting took place during the low-P/high-T stage, because probable melt of leucocratic gneiss contains cordierite. The field relationships and petrography of the syenite at Filchnerfjella are similar to those of post-tectonic plutons from central Dronning Maud Land, and most of the post-tectonic intrusive rocks have within-plate geochemical features. The structural history in Filchnerfjella and surrounding areas can be divided into the Pan-African stage and the Meso to Cenozoic stage that relates to the break-up of Gondwana.
Resumo:
We present a suite of new high-resolution records (0-135 ka) representing pulses of aeolian, fluvial, and biogenic sedimentation along the Senegalese continental margin. A multiproxy approach based on rock magnetic, element, and color data was applied on three cores enclosing the present-day northern limit of the ITCZ. A strong episodic aeolian contribution driven by stronger winds and dry conditions and characterized by high hematite and goethite input was revealed north of 13°N. These millennial-scale dust fluxes are synchronous with North Atlantic Heinrich stadials. Fluvial clay input driven by the West African monsoon predominates at 12°N and varies at Dansgaard-Oeschger time scales while marine productivity is strongly enhanced during the African humid periods and marine isotope stage 5. From latitudinal signal variations, we deduce that the last glacial ITCZ summer position was located between core positions at 12°26' and 13°40'N. Furthermore, this work also shows that submillennial periods of aridity over northwest Africa occurred more frequently and farther south than previously thought.
Resumo:
During Leg 125, scientists drilled two serpentinite seamounts: Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc. Grain densities of the serpentinized peridotites range from 2.44 to 3.02 g/cm**3. The NRM intensity of the serpentinized peridotites ranges from 0.01 to 0.59 A/m and that of serpentine sediments ranges from 0.01 to 0.43 A/m. Volume susceptibilities of serpentinized peridotites range from 0.05 * 10**-3 SI to 9.78 * 10**-3 SI and from 0.12 * 10**-3 to 4.34 * 10**-3 SI in the sediments. Koenigsberger ratios, a measure of the relative contributions of remanent vs. induced magnetization to the magnetic anomaly, vary from 0.09 to 80.93 in the serpentinites and from 0.06 to 4.74 in the sediments. The AF demagnetization behavior of the serpentinized peridotites shows that a single component of remanence (probably a chemical remanence carried by secondary magnetite) can be isolated in many samples that have a median destructive field less than 9.5 mT. Multiple remanence components are observed in other samples. Serpentine sediments exhibit similar behavior. Comparison of the AF demagnetization of saturation isothermal remanence and NRM suggests that the serpentinized peridotites contain both single-domain and multidomain magnetite particles. The variability of the magnetic properties of serpentinized peridotites reflects the complexity of magnetization acquired during serpentinization. Serpentinized peridotites may contribute to magnetic anomalies in forearc regions.
Resumo:
The Leg 173 Site 1067 and 1068 amphibolites and metagabbros from the west Iberia margin exhibit variable whole-rock compositions from primitive to more evolved (Mg numbers = 49-71) that are generally incompatible trace and rare earth element enriched (light rare earth element [LREE] = 11-89 x chondrite). The Site 1067 amphibolites are compositionally similar to the basalts reported at Site 899 from this same region, based on trace and rare earth element contents. The Site 1068 amphibolites and metagabbros are similar to the Site 899 diabases but are more LREE enriched. However, the Sites 1067 and 1068 amphibolites and metagabbros are not compositionally similar to the Site 900 metagabbros, which are from the same structural high as the Leg 173 samples. The Leg 173 protoliths may be represented by basalts, diabases, and/or fine-grained gabbros that formed from incompatible trace element-enriched liquids.
Resumo:
At subduction zones, the permeability of major fault zones influences pore pressure generation, controls fluid flow pathways and rates, and affects fault slip behavior and mechanical strength by mediating effective normal stress. Therefore, there is a need for detailed and systematic permeability measurements of natural materials from fault systems, particularly measurements that allow direct comparison between the permeability of sheared and unsheared samples from the same host rock or sediment. We conducted laboratory experiments to compare the permeability of sheared and uniaxially consolidated (unsheared) marine sediments sampled during IODP Expedition 316 and ODP Leg 190 to the Nankai Trough offshore Japan. These samples were retrieved from: (1) The décollement zone and incoming trench fill offshore Shikoku Island (the Muroto transect); (2) Slope sediments sampled offshore SW Honshu (the Kumano transect) ~ 25 km landward of the trench, including material overriden by a major out-of-sequence thrust fault, termed the "megasplay"; and (3) A region of diffuse thrust faulting near the toe of the accretionary prism along the Kumano transect. Our results show that shearing reduces fault-normal permeability by up to 1 order of magnitude, and this reduction is largest for shallow (< 500 mbsf) samples. Shearing-induced permeability reduction is smaller in samples from greater depth, where pre-existing fabric from compaction and lithification may be better developed. Our results indicate that localized shearing in fault zones should result in heterogeneous permeability in the uppermost few kilometers in accretionary prisms, which favors both the trapping of fluids beneath and within major faults, and the channeling of flow parallel to fault structure. These low permeabilities promote the development of elevated pore fluid pressures during accretion and underthrusting, and will also facilitate dynamic hydrologic processes within shear zones including dilatancy hardening and thermal pressurization.
Resumo:
We present new U-Pb zircon (SHRIMP) data on rocks from Mt Newton and Cumpston Massif in the southern Prince Charles Mountains. Our data demonstrate that Mt Newton was affected by a newly proposed Palaeoproterozoic "Newton" Orogeny at c. 2100-2200 Ma. Sedimentation, felsic volcanism (c. 2200 Ma), metamorphism and folding, followed by granite intrusion (c. 2100 Ma), suggest development of a trough or aulacogene in the area during the early Palaeoproterozoic. An orthogneiss from Cumpston Massif yielded an age of c. 3180 Ma for granitic protolith emplacement, which is in good agreement with many U-Pb zircon ages from similar rocks in the southern Mawson Escarpment. A syn- to late-tectonic muscovite-bearing pegmatite from Cumpston Massif yielded a c. 2500 Ma date of emplacement, which indicates early Palaeoproterozoic activity in this block, probably in response to a tectono-magmatic episode in the Lambert Terrane bordering the Ruker Terrane in the northeast. The correlation of tectono-magmatic events in both the Ruker and Lambert terranes of the southern Prince Charles Mountains provides evidence for their common evolution during the Proterozoic.
Resumo:
At Site 582, DSDP Leg 87, turbidites about 560 m thick were recovered from the floor of the Nankai Trough. A turbidite bed is typically composed of three subdivisions: a lower graded sand unit, an upper massive silt unit, and an uppermost Chondrites burrowed silt unit. The turbidites intercalate with bluish gray hemipelagic mud which apparently accumulated below the calcite compensation depth. In order to investigate the nature and provenance of the turbidites, we studied the grain orientation, based on magnetic fabric measurements and thin-section grain counting, and grain size, using a photo-extinction settling tube and detrital modal analysis. The following results were obtained: (1) grain orientation analysis indicates that the turbidity current transport parallels the trench axis, predominantly from the northeast; (2) Nankai Trough turbidites generally decrease in grain size to the southwest; (3) turbidite sands include skeletal remains indicative of fresh-water and shallow-marine environments; and (4) turbidites contain abundant volcanic components, and their composition is analogous to the sediments of the Fuji River-Suruga Bay area. Considering other evidence, such as physiography and geometry of trench fill, we conclude that the turbidites of Site 582 as well as Site 583 were derived predominantly from the mouth of Fuji River and were transported through the Suruga Trough to the Nankai Trough, a distance of some 700 km. This turbidite transport system has tectonic implications: (1) the filling of the Nankai Trough is the direct consequence of the Izu collision in Pliocene- Pleistocene times; (2) the accretion of trench fill at the trench inner slope observed in the Nankai Trough is controlled by collision tectonics; and (3) each event of turbidite deposition may be related to a Tokai mega-earthquake.