380 resultados para Receiving waters
Resumo:
Sites 790 and 791 lie in the eastern half graben of the Sumisu Rift, a backarc graben west of the active Izu-Bonin arc volcanoes Sumisu Jima and Tori Shima, at 30°54.96'N, 139°50.66'E, in 2223 m water depth and 30°54.97'N, 139°52.20'E, in 2268 m water depth, respectively. A small decrease in the sulfate concentration in the interstitial waters from these sites suggests fairly low microbial activity by sulfate-reducing bacteria. The values of the dissolved free amino acids (DFAA) in the interstitial waters from both sites range from 1.26 to 6.82 µmol/L, with an average of 3.81 µmol/L. The acidic, basic, neutral, aromatic, and sulfur-containing amino acids have average values of 0.32, 0.50, 2.71, 0.15, and 0.09 µmol/L, respectively. The relative abundances of the acidic, basic, neutral, aromatic, and sulfur-containing amino acids average 8, 13,72, 4, and 1 mol%, respectively. Glycine, serine, alanine, ornithine, and aspartic acid are major constituent amino acids. The dissolved combined amino acids (DCAA) values range between 1.25 and 44.35 µmol/L, with an average of 10.36 µmol/L. The mean concentrations and relative abundances of the acidic, basic, neutral, aromatic, and sulfur-containing amino acids are 2.29 (22 mol%), 0.60 (6 mol%), 6.70 (65 mol%), 0.09 (1 mol%), and 0.00 µmol/L (0 mol%), respectively. Glycine is the most abundant amino acid residue, followed by glutamic acid, serine, and alanine. The predominance of DCAA over DFAA present in the interstitial waters from Sites 790 and 791 is consistent with previous results from interstitial-water and seawater analyses. The most plausible source for the DCAA is biogenic calcareous debris. A much greater depletion of aspartic acid and the basic fraction, except for ornithine, is found in the DCAA. The decomposition of the basic amino acid fraction or its incorporation to clay minerals would result in a decrease in its relative abundance, whereas ornithine is produced during early diagenesis. The characteristics of the amino acids in the interstitial waters are (1) a greater depletion of the acidic amino acid fraction in the DFAA than in the DCAA and (2) the enrichment of glycine and serine in both. The adsorption or reaction of the amino acids in interstitial waters with biogenic carbonates would be responsible for the lower relative abundance of the acidic fraction of the DFAA. The production of glycine during early diagenesis and its stability in solution would raise its relative abundance in the interstitial waters.
Resumo:
Basic chemical composition of interstitial water in sediments of the Northwestern Pacific along a profile from the continental shelf of the Japan Trench to the ocean bed is discussed. Transformation of interstitial water in sediments rich in organic matter on the continental shelf and at the bottom of the Japan Trench is indicated. Variation in the vertical direction of elementary constituents of interstitial salt solution and variations in certain biogenic elements permit to make conclusions concerning processes taking place in sediments during sedimentation and diagenesis. These processes cause both metamorphism of water and transformation of organic and mineral content of sediments.
Resumo:
In pursuance of previous studies water samples were taken in the Atlantic and Mediterranean during the 12th, 14th and 15th cruises of RV Mikhail Lomonosov in 1962-1964 to determine total and particulate organic carbon and permanganate oxidizability. Preliminary processing of the water samples was carried out in the normal manner in the on-board laboratory immediately after they had been taken: destruction of bicarbonates and carbonates by precise addition of acid (by alkalinity) and evaporation to dryness at 50-60°C. It is quite probable that the corresponding volatile fraction of organic matter is lost under these conditions. In discussion it was demonstrated that it may now be assumed that the carbon of the volatile fraction averages approximately 15% of total carbon, i.e., 15% of the sum of organic carbon of the volatile and nonvolatile fractions. Oxidizability was determined in all samples in the on-board laboratory.
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.