304 resultados para Nd : YVO4


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DSDP/ODP Hole 504B, drilled in the 5.9 Ma southern flank of the Costa Rica Rift, represents the deepest section through modern ocean floor basaltic basement. The hole penetrates a 570 m thick volcanic zone, a 210 m thick transition zone of volcanic rocks and dykes, and 1056 m of dykes. A representative selection of these basalt types has been investigated with respect to Nd and Pb isotopes. The epsilonNd of the basalts varies from 7.62 to 11.16. This range in the Nd-isotope composition represents about 67% of the total range reported for Pacific MORB. The Pb-isotope composition also shows significant variation, with 206Pb/204Pb varying from 17.90 to 18.82. The isotopic data show that a small volume of enriched mantle existed in the source. The large ranges in isotopic composition in a single drill hole demonstrate the importance of small-scale mantle heterogeneities in the petrogenesis of MORB. Fractional melting and extraction of small magma batches by channelled flow, and small, short-lived crustal magma reservoirs, with limited potential for mixing of the mantle derived magmas, are favored by these isotopic data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

143Nd/144Nd ratios have been determined on 37 samples of oceanic basalt, with a typical precision of +/- 2-3 * 10**-5 (2 sigma). Ocean island and dredged and cored submarine basalts are included for which reliable measurements of 87Sr/86Sr ratios exist in the literature or have been measured as part of this study. A strong negative correlation exists between 143Nd/144Nd and 87Sr/86Sr ratios in basalts from Iceland and the Reykjanes Ridge, but such a clear correlation does not exist for samples from the Hawaiian Islands. However, when other ocean island basalts from the Atlantic are included there is an overall correlation between these two parameters. Increases and decreases in Rb/Sr in oceanic basalt source regions have in general been accompanied by decreases and increases respectively in Sm/Nd ratios. The compatibility of the data with single-stage models is assessed and it is concluded that enrichment and depletion events, which are consistent with transfer of silicate melts, are responsible for the observed variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pelagic clay of the east-central Pacific province is shown to be a mixture of three primary detrital components, reflecting continental source areas in Asia, North America, and Central and South America. Relative contributions from each source area are a function of geography, and this distribution appears to have remained constant over the past five million years, despite changing flux rates. A Q-mode factor analysis of downcore records for Pb, Sr, and Nd isotopes identified three factors that account for 98% of the total variance. These factors represent the radiogenic isotopic signatures of 1) late Cenozoic Asian dust, which dominates in the central North Pacific; 2) North American continental hemipelagic/eolian sources, restricted mainly to the easternmost North Pacific at ~30 °N latitude; and 3) Central and South American sources, restricted to areas east of ~100 °W longitude. South of the Intertropical Convergence Zone (~6 °N), the Asian dust signature diminishes abruptly. We conclude that late Cenozoic Asian dust sources can be isotopically differentiated downcore from both North American and South and Central American sources in the eastcentral Pacific. This approach has a utility for identifying changes in long-term Cenozoic atmospheric circulation patterns.