392 resultados para Late Cretaceous


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shallow- to deep-water environments are represented by the sediments and rocks recovered from the Walvis Ridge- Angola Basin transect. These calcareous oozes, chalks, limestones, and volcaniclastic sedimentary rocks are used to define and correlate four lithostratigraphic units. The sediments were deposited in cycles which represent recurring tectonic or Oceanographic events and may be related to climatic fluctuations and orbital perturbations. Turbidites are the most common and easily identified sedimentary cycle. They are Late Cretaceous to Paleocene in age and are repeated in intervals ranging from thousands to tens of thousands of years. They are also found interbedded between basalt layers. Turbidites are easily distinguished from the other cycles present by their sedimentary structures, mineral composition, alteration products, and physical properties (GRAPE) data. Large-scale turbidites, debris, or slump breccias are found at or just above the Cretaceous/Tertiary boundary and indicate an event of considerable energy possibly related to intense tectonic activity. Diagenetic cycles, interpreted as small-scale dissolution cycles or sequences produced by biogenic activity, occur in early Paleocene chalks. The recurrence intervals average -20,000 y. but have a wide range of values. Variations in CaCO3 content, color, gradational boundaries, and trace fossil content characterize these sediments. These cycles reflect bottom-water conditions. Ooze-chalk cycles occur in upper Oligocene to upper Paleocene sediments and represent conditions that once existed at the sediment/water interface where they obtained their diagenetic potential. These oscillations are repeated over tens of thousands of years and may have no modern analogs. Color variations in sediments at the Cretaceous/Tertiary boundary indicate local fluctuations in oxygen content within the sediments or the water column. This situation lasted for several hundred thousand years and is not repeated elsewhere in the sequence. Large dissolution cycles are recorded in the sediments at Site 527 that are of middle Miocene and early Oligocene to middle Eocene age. During this time the seafloor at this site appears to have been located at or subsided to a depth occupied by a fluctuating CCD and lysocline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed d18O and d13C stratigraphy has been generated from analysis of well-preserved Albian - Early Maastrichtian foraminifera from Deep Sea Drilling Project (DSDP) Sites 511 and 327 (Falkland Plateau; ~58°S - 62°S paleolatitude) in the southern South Atlantic, and Cenomanian and Coniacian - Santonian foraminifera from DSDP Site 258 (Naturaliste Plateau; ~58°S paleolatitude) in the southern Indian Ocean. These results, when combined with previously published Maastrichtian stable isotope data from Ocean Drilling Program (ODP) Site 690 (Weddell Sea, ~65°S paleolatitude), provide new insight into the climatic and oceanographic history of the southern high latitudes during Middle-Late Cretaceous time. The planktonic foraminifer d18O curves reveal a gradual warming of surface waters from the Albian through the Cenomanian followed by extremely warm surface waters from the Turonian through the early Campanian. Long-term cooling of surface waters began in the late early Campanian and continued through the end of the Maastrichtian. The benthic foraminifer d18O record generally parallels changes in the oxygen isotopic curves defined by shallow-dwelling planktonic foraminifera. The vertical oxygen and carbon isotopic gradients were relatively low during the Albian - Cenomanian, high from the Turonian - Early Campanian, and then low during the late Campanian and Maastrichtian.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mass-accumulation rate and grain size of the total eolian component of North Pacific pelagic clays at Deep Sea Drilling Project Sites 576 and 578 have been used to evaluate changes in eolian sedimentation and the intensity of atmospheric circulation that have occurred during the past 70 m.y. Eolian deposition, an indicator of source area aridity, was low in the Paleocene, Eocene, and Oligocene, apparently reflecting the humid environments of that time as well as the lack of glacial erosion products. A general increase in eoiian accumulation in the Miocene apparently reflects the relative increase in global aridity during the latter part of the Cenozoic. A dramatic increase in eolian accumulation rates in the Pliocene reflects the increased aridity and availability of glacial erosion products associated with Northern Hemisphere glaciation 2.5 m.y. ago. Eolian grain size, an indicator of wind intensity, suggests that Late Cretaceous wind strength was comparable to present-day wind strength. A sharp decrease in eolian grain size across the Paleocene/Eocene boundary is not readily interpreted, but may indicate a significant reduction in the intensity of atmospheric circulation at that time. Fine eolian grain size and low accumulation rates in the Eocene and early Oligocene are in agreement with low early Tertiary thermal gradients and less vigorous atmospheric circulation. Large increases in grain size during the Oligocene, mid-to-late Miocene, and Pliocene appear to be a response to steepening thermal gradients resulting from increasing polar isolation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analyses of Re, Os, and Ir concentrations, as well as Os-isotopic compositions, are reported for a suite of sediments from Ocean Drilling Program Site 959. These samples vary in age from late Neogene to Late Cretaceous, and represent a range in depositional oxidation-reduction conditions from suboxic in the Neogene to anoxic in the Late Cretaceous. Age assignments based on shipboard biostratigraphic data are used to calculate initial 187Os/186Os ratios of Neogene nannofossil/foraminifer oozes and Eocene to upper Oligocene laminated diatomites. These calculated initial ratios are in general agreement with published data constraining the Os-isotopic evolution of seawater through time, indicating that the Os-isotopic composition of these sediments is controlled largely by the Os isotopic composition of contemporaneous seawater. Results from analyses of Upper Cretaceous to lower Paleocene claystones do not exhibit elevated Ir concentrations and exhibit Re-Os systematics that are highly consistent with closed-system production of 187Os by in situ 187Re decay. Scatter in both the Cretaceous and Cenozoic data sets is likely the result of the influence of nonhydrogenous Os, carried by clastics, on the bulk sediment Os-isotopic composition, or post-depositional mobility of Re and/or Os.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paired analyses of Os isotope composition and concentration of bulk sediment and leachable Os in a metalliferous pelagic clay sequence from the North Pacific, ODP Site 886C, are used to reconstruct the marine Os isotope record and the particulate meteoritic Os flux between 65.5 and 78 Ma. Measured 187Os/188Os of bulk sediments ranges from approximately 0.64 to 0.32 and those of leach analyses are very similar to bulk analyses. Hydrogenous Os dominates the sedimentary Os inventory throughout most of the studied interval. As a result the measured 187Os/188Os of leachable Os approximates that of contemporaneous seawater. The ODP 886C record shows rising 187Os/188Os in the deepest portion of the core, with a local maximum of 0.66 close to 74 Ma. The 67-72 Ma portion of the record is characterized by nearly constant 187Os/188Os ratios close to 0.6. The structure of the marine Os isotope record from ODP 886C differs markedly from the seawater 87Sr/86Sr curve, which rises monotonically throughout the time interval studied here. Calculated particulate meteoritic Os fluxes are between 0.5 and 2 pg/cm**2/kyr throughout most of the studied interval. Two discrete intervals of the core (one of which is within Cretaceous Tertiary, boundary KTB interval) are characterized by higher fluxes of meteoritic Os. Excluding these two intervals, the average background flux of particulate meteoritic Os is roughly half of that estimated from analyses of Cenozoic marine sediments. These are the first Os isotope data to provide evidence of resolvable temporal variations in the background flux of particulate meteoritic material to the Earth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Original results of igneous rock studies are presented. The rocks were dredged during a marine expedition (cruise 37 of R/V Akademik M.A. Lavrent'ev in August-September, 2005) in the region of the submarine Vityaz Ridge and the Kuril Arc outer slope. Several age complexes (Late Cretaceous, Eocene, Late Oligocene, Miocene, and Pliocene-Pleistocene) are recognizable on the Vityaz Ridge. These complexes are characterized by a number of common geochemical features since all of them represent formations of island arc calc-alkali series. At the same time, they also have individual features reflecting different geodynamic settings. The outer slope of the Kuril Arc demonstrates submarine volcanism. Pliocene-Pleistocene volcanic rocks dredged here are similar to volcanites of the Kuril-Kamchatka Arc frontal zone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcareous nannofossils were studied in 574 Neogene samples recovered from eight sites drilled in block-faulted basins on the continental margin of Oman. This portion of the Arabian Sea experiences seasonal upwelling associated with the southwest monsoon. Not surprisingly, some of the more typical Neogene warm-water nannoplankton are either missing entirely or are extremely rare in these sediments. Coccolithus pelagicus, a typical cold-water indicator, is extremely abundant in many samples of late Pliocene to early Pleistocene age. These intervals correspond to periods of Northern Hemisphere glaciation. Reworked Late Cretaceous and Cenozoic nannofossils are found in a majority of the samples. They were probably carried from the Arabian Peninsula or the continent of Africa on strong southwest summer winds. Ages for the various nannofossil events were calculated by projecting the nannofossil datums onto the magnetostratigraphic scale for Sites 724, 727, and 728. These are the first ages for the various nannofossil datums derived from Oman Margin sediments. The following ages have been calculated for these nannofossil events: FAD Emiliania huxleyi, 0.23 Ma; LAD Pseudoemiliania lacunosa, 0.38 Ma; FAD Helicosphaera inversa, 0.42 Ma; top of acme of Reticulofenestra sp. A, 0.70 Ma; FAD Gephyrocapsaparallela, 0.85 Ma; LAD Gephyrocapsa spp. (large), 1.07 Ma; LAD Helicosphaera sellii, 1.34 Ma; LAD Calcidiscus macintyrei, 1.47 Ma; FAD Gephyrocapsa oceanica, 1.53 Ma; FAD Gephyrocapsa caribbeanica, 1.80 Ma; LAD Discoaster brouweri, 2.03 Ma; LAD Discoasterpentaradiatus, 2.31 Ma; LAD Discoaster surculus, 2.42; LAD Discoaster tamalis, 2.77 Ma; LAD Sphenolithus abies, 3.44 Ma; and LAD Reticulofenestra pseudoumbilica, 3.44 Ma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of particulate organic matter (OM) in Arctic Ocean sediments from the Late Cretaceous to the Eocene (IODP Expedition 302) has revealed detailed information about the aquatic/marine OM fluxes, biological sources, preservation and export of terrestrial material. Here, we present detailed data from maceral analysis, vitrinite reflectance measurements and organic geochemistry. During the Campanian/Paleocene, fluxes of land-derived OM are indicated by reworked and oxidized macerals (vitrinite, inertinite) and terrigenous liptinite (cutinite, sporinite). In the Early Eocene, drastic environmental changes are indicated by peaks in aquatic OM (up to 40-45%, lamalginite, telalginite, liptodetrinite, dinoflagellate cysts) and amorphous OM (up to 50% bituminite). These events of increased aquatic OM flux, similar to conditions favoring black shale deposition, correlate with the global d13C events "Paleocene/Eocene Thermal Maximum" (PETM) and "Elmo-event". Freshwater discharge and proximity of the source area are documented by freshwater algae material (Pediastrum, Botryococcus) and immature land-plant material (corphuminite, textinite). We consider that erosion of coal-bearing sediments during transgression time lead to humic acids release as a source for bituminite deposited in the Early Eocene black shales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bulk rock geochemistry and inoceramid isotopic composition from Cenomanian to Santonian, finely laminated, organic-rich black shales, recovered during Ocean Drilling Program Leg 207 on Demerara Rise (western tropical North Atlantic), suggest persistent anoxic (free H2S) conditions within the sediments and short-term variations within a narrow range of anoxic to episodically dysoxic bottom waters over a ~15 Ma time interval. In addition to being organic-rich, the 50-90 m thick sections examined exhibit substantial bulk rock enrichments of Si, P, Ba, Cu, Mo, Ni, and Zn relative to World Average Shale. These observations point to high organic burial fluxes, likely driven by high primary production rates, which led to the establishment of intensely sulfidic pore waters and possibly bottom waters, as well as to the enrichments of Cr, Mo, U, and V in the sediments. At the same time, the irregular presence of benthic inoceramids and foraminifera in this facies demonstrates that the benthic environment could not have been continuously anoxic. The d13C and d15N values of the inoceramid shell organics provide no evidence of chemosymbiosis and are consistent with pelagic rain as being a significant food source. Demerara Rise inoceramids also exhibit well-defined, regularly spaced growth lines that are tracked by d13C and d18O variations in shell carbonate that cannot be simply explained by diagenesis. Instead, productivity variations in surface waters may have paced the growth of the shells during brief oxygenation events suitable for benthic inoceramid settlement. These inferences imply tight benthopelagic coupling and more dynamic benthic conditions than generally portrayed during black shale deposition. By invoking different temporal scales for geochemical and paleontological data, this study resolves recent contradictory conclusions (e.g., sulfidic sedimentary conditions versus dysoxic to suboxic benthic waters) drawn from studies of either sediment geochemistry or fossil distributions alone on Demerara Rise. This variability may be relevant for discussions of black shales in general.