408 resultados para Coral bleaching
Resumo:
Ocean acidification (OA) is expected to drive the transition of coral reef ecosystems from net calcium carbonate (CaCO3) precipitating to net dissolving within the next century. Although permeable sediments represent the largest reservoir of CaCO3 in coral reefs, the dissolution of shallow CaCO3 sands under future pCO2 levels has not been measured under natural conditions. In situ, advective chamber incubations under elevated pCO2 (~800 µatm) shifted the sediments from net precipitating to net dissolving. Pore water advection more than doubled dissolution rates (1.10 g CaCO3/m**2/day) when compared to diffusive conditions (0.42 g CaCO3/m**2 /day). Sediment dissolution could reduce net ecosystem calcification rates of the Heron Island lagoon by 8% within the next century, which is equivalent to a 25% reduction in the global average calcification rate of coral lagoons. The dissolution of CaCO3 sediments needs to be taken into account in order to address how OA will impact the net accretion of coral reefs under future predicted increases in CO2.
Resumo:
Zooxanthellate colonies of the scleractinian coral Astrangia poculata were grown under combinations of ambient and elevated nutrients (5 µM NO, 0.3 µM PO4, and 2nM Fe) and CO2 (780 ppmv) treatments for a period of 6 months. Coral calcification rates, estimated from buoyant weights, were not significantly affected by moderately elevated nutrients at ambient CO2 and were negatively affected by elevated CO2 at ambient nutrient levels. However, calcification by corals reared under elevated nutrients combined with elevated CO2 was not significantly different from that of corals reared under ambient conditions, suggesting that CO2 enrichment can lead to nutrient limitation in zooxanthellate corals. A conceptual model is proposed to explain how nutrients and CO2 interact to control zooxanthellate coral calcification. Nutrient limited corals are unable to utilize an increase in dissolved inorganic carbon (DIC) as nutrients are already limiting growth, thus the effect of elevated CO2 on saturation state drives the calcification response. Under nutrient replete conditions, corals may have the ability to utilize more DIC, thus the calcification response to CO2 becomes the product of a negative effect on saturation state and a positive effect on gross carbon fixation, depending upon which dominates, the calcification response can be either positive or negative. This may help explain how the range of coral responses found in different studies of ocean acidification can be obtained.
Resumo:
This paper presents the first compilation of information on the spatial distribution of scleractinian cold-water corals in the Gulf of Cádiz based on literature research and own observations (video footage, sediment samples). Scleractinian cold-water corals are widely distributed along the Spanish and Moroccan margins in the Gulf of Cádiz, where they are mainly associated with mud volcanoes, diapiric ridges, steep fault escarpments, and coral mounds. Dendrophyllia cornigera, Dendrophyllia alternata, Eguchipsammia cornucopia, Madrepora oculata and Lophelia pertusa are the most abundant reef-forming species. Today, they are almost solely present as isolated patches of fossil coral and coral rubble. The absence of living scleractinian corals is likely related to a reduced food supply caused by low productivity and diminished tidal effects. In contrast, during the past 48 kyr scleractinian corals were abundant in the Gulf of Cádiz, although their occurrence demonstrates no relationship with main climatic or oceanographic changes. Nevertheless, there exists a conspicuous relationship when the main species are considered separately. Dendrophylliids are associated with periods of relatively stable and warm conditions. The occurrence of L. pertusa mainly clusters within the last glacial when bottom current strength in the Gulf of Cádiz was enhanced and long-term stable conditions existed in terms of temperature. Madrepora oculata shows a higher tolerance to abrupt environmental changes.
Resumo:
As the surface ocean equilibrates with rising atmospheric CO2, the pH of surface seawater is decreasing with potentially negative impacts on coral calcification. A critical question is whether corals will be able to adapt or acclimate to these changes in seawater chemistry. We use high precision CT scanning of skeletal cores of Porites astreoides, an important Caribbean reef-building coral, to show that calcification rates decrease significantly along a natural gradient in pH and aragonite saturation (Omega arag). This decrease is accompanied by an increase in skeletal erosion and predation by boring organisms. The degree of sensitivity to reduced ?arag measured on our field corals is consistent with that exhibited by the same species in laboratory CO2 manipulation experiments. We conclude that the Porites corals at our field site were not able to acclimatize enough to prevent the impacts of local ocean acidification on their skeletal growth and development, despite spending their entire lifespan in low pH, low Omega arag seawater.
Resumo:
Ocean acidification is an ongoing threat for marine organisms due to the increasing atmospheric CO2 concentration. Seawater acidification has a serious impact on physiologic processes in marine organisms at all life stages. On the other hand, potential tolerance to external pH changes has been reported in coral larvae. Information about the possible mechanisms underlying such tolerance responses, however, is scarce. In the present study, we examined the effects of acidified seawater on the larvae of Acropora digitifera at the molecular level. We targeted two heat shock proteins, Hsp70 and Hsp90, and a heat shock transcription factor, Hsf1, because of their importance in stress responses and in early life developmental stages. Coral larvae were maintained under the ambient and elevated CO2 conditions that are expected to occur within next 100 years, and then we evaluated the expression of hsps and hsf1 by quantitative real-time polymerase chain reaction (PCR). Expression levels of these molecules significantly differed among target genes, but they did not change significantly between CO2conditions. These findings indicate that the expression of hsps is not changed due to external pH changes, and suggest that tolerance to acidified seawater in coral larvae may not be related to hsp expression.
Coral oxygen isotope and Sr/Ca data from the Northern Gulf of Aqaba (late Holocene), sample AQB-10-B