311 resultados para 316.825
Resumo:
Extensive investigations of sedimentary barium were performed in the southern South Atlantic in order to assess the reliability of the barium signal in Antarctic sediments as a proxy for paleoproductivity. Maximum accumulation rates of excess barium were calculated for the Antarctic zone south of the polar front where silica accumulates at high rates. The correspondence between barium and opal supports the applicability of barium as a proxy for productivity. Within the Antarctic zone north of today's average sea ice maximum, interglacial vertical rain rates of excess barium are high, with a maximum occurring during the last deglaciation and early Holocene and during oxygen isotope chronozone 5.5. During these periods, the maximum silica accumulation was supposedly located south of the polar front. Glacial paleoproductivity, instead, was low within the Antarctic zone. North of the polar front, significantly higher barium accumulation occurs during glacial times. The vertical rain rates, however, are as high as in the glacial Antarctic zone. Therefore there was no evidence for an increased productivity in the glacial Southern Ocean.
Resumo:
Surface samples, mostly from abyssal sediments of the South Atlantic, from parts of the equatorial Atlantic, and of the Antarctic Ocean, were investigated for clay content and clay mineral composition. Maps of relative clay mineral content were compiled, which improve previous maps by showing more details, especially at high latitudes. Large-scale relations regarding the origin and transport paths of detrital clay are revealed. High smectite concentrations are observed in abyssal regions, primarily derived from southernmost South America and from minor sources in Southwest Africa. Near submarine volcanoes of the Antarctic Ocean (South Sandwich, Bouvet Island) smectite contents exhibit distinct maxima, which is ascribed to the weathering of altered basalts and volcanic glasses. The illite distribution can be subdivided into five major zones including two maxima revealing both South African and Antarctic sources. A particularly high amount of Mg- and Fe-rich illites are observed close to East Antarctica. They are derived from biotite-bearing crystalline rocks and transported to the west by the East Antarctic Coastal Current. Chiorite and well-crystallized dioctaedral illite are typical minerals enriched within the Subantarctic and Polarfrontal-Zone but of minor importance off East Antarctica. Kaolinite dominates the clay mineral assemblage at low latitudes, where the continental source rocks (West Africa, Brazil) are mainly affected by intensive chemical weathering. Surprisingly, a slight increase of kaolinite is observed in the Enderby Basin and near the Filchner-Ronne Ice shelf. The investigated area can be subdivided into ten, large-scale clay facies zones with characteristic possible source regions and transport paths. Clay mineral assemblages of the largest part of the South Atlantic, especially of the western basins are dominated by chlorite and illite derived from the Antarctic Peninsula and southernmost South America and supported by advection within the Circumantarctic Deep Water flow. In contrast, the East Antarctic provinces are relatively small. Assemblages of the eastern basins north of 30°S are strongly influenced by African sources, controlled by weathering regimes on land and by a complex interaction of wind, river and deep ocean transport. The strong gradient in clay mineral composition at the Brazilian slope indicate a relatively low contribution of tropically derived assemblages to the western basins.