696 resultados para 122-761
Resumo:
During drilling at Sites 759, 760, and 761 of Leg 122 (Exmouth Plateau, northwest Australia), a thick section of Upper Triassic sediments was recovered. Paleomagnetic analyses were made on 398 samples from Holes 759B, 760A, 760B, and 761C. Progressive thermal demagnetization, alternating field demagnetization, or mixed treatment removed an initial unstable component and isolated a characteristic remanent magnetization which is of normal or reversed polarity. The magnetostratigraphic results allow us to propose a magnetic polarity sequence which extends from the upper Carnian to lower Rhaetian. This sequence reveals many more reversals than previously suggested from paleomagnetic studies. The magnetostratigraphic data also allow us to suggest correlations between Sites 759 and 760.
Resumo:
Well-developed Campanian to Maestrichtian pelagic cyclic sediments were recovered from Hole 762C on the Exmouth Plateau, off northwest Australia, during Ocean Drilling Program Leg 122. The cycles consist of nannofossil chalk (light beds) and clayey nannofossil chalk (dark beds). Both light and dark beds are strongly to moderately bioturbated, alternate on a decimeter scale, and exhibit gradual boundaries. Bioturbation introduces materials from a bed of one color into an underlying bed of another color, indicating that diagenesis is not responsible for the cyclicity. Differences in composition between the light and dark beds, revealed by calcium carbonate measurement and X-ray diffraction analysis, together with trace fossil evidence, indicate that the cycles in the sediments are a depositional feature. Diagenetic processes may have intensified the appearance of the cycles. Spectral analysis was applied to the upper Campanian to lower Maestrichtian cyclic sediments to examine the regularity of the cycles. Power spectra were calculated from time series using Walsh spectral analysis. The most predominant wavelengths of the color cycles are 34-41 cm and 71-84 cm. With an average sedimentation rate of 1.82 cm/k.y. in this interval, we found the time durations of the cycles to be around 41 k.y. and 21 k.y., respectively, comparable to the obliquity and precession periods of the Earth's rotation, which strongly suggests an orbital origin for the cycles. On the basis of sedimentological evidence and plate tectonic reconstruction, we propose the following mechanism for the formation of the cyclic sediments from Hole 762C. During the Late Cretaceous, when there was no large-scale continental glaciation, the cyclic variations in insolation, in response to cyclic orbital changes, controlled the alternation of two prevailing climates in the area. During the wetter, equable, and warmer climatic phases under high insolation, more clay minerals and other terrestrial materials were produced on land and supplied by higher runoff to a low bioproductivity ocean, and the dark clayey beds were deposited. During the drier and colder climatic phases under low insolation, fewer clay minerals were produced and put into the ocean, where bioproductivity was increased and the light beds were deposited.