293 resultados para west Indian sweet potato weevil
Resumo:
In an earlier paper by two of the authors the conclusion was reached that the 33 recognized species of oxides of Mn could be separated into 3 groups: 1) those which appeared to be persistently supergene in origin, 2) those which appeared to be persistently hypogene, and 3) those which were supergene in some localities and hypogene in other localities. When that paper was written, there were available about 250 X-ray diffraction analyses of mineral specimens, also 35 complete and about 150 partial chemical analyses. The conclusions of that paper were based upon the interpretation of the geologic conditions under which these specimens occurred. Late in the preparation of that paper, it seemed worthwhile to make numerous semiquantitative analyses of specimens, largely from 9 western [U.S.A] states, selected carefully from 5 groups of geologic environments, in the hope that the frequency and percentages of some elements might be distinctive of the several geologic groups. For this purpose, 95 specimens were selected from the 5 groups, as follows: 19 specimens interpreted as supergene oxides by the geologists who collected them, 35 specimens of hypogene vein oxides, 22 specimens of Mn-bearing hot spring aprons, 9 specimens of stratified oxides, and 10 specimens of deep-sea nodules. The spectrographic analyses here recorded indicate that a group of elements - W, Ba, Sr, Be, As, Sb, Tl, and Ge - are present more commonly, and largely in higher percentages, in the hypogene oxide than in the supergene oxides and thus serve to indicate different sources of the Mn. Also, the frequency and percentages of some of these elements indicate a genetic relation of the manganese oxides in hypogene veins, hot spring aprons, and stratified deposits. The analyses indicate a declining percentage of some elements from depth to the surface in these 3 related groups and increasing percentages of some other elements. It is concluded that some of the elements in deep-sea nodules indicate that sources other than rocks decomposed on the continents, probably vulcanism on the floors of the seas, have contributed to their formation.
Grain size distribution of the lagoonal deposits within the South Malé Atoll, Maldives, Indian Ocean
Resumo:
Seismic and multibeam data, as well as sediment samples were acquired in the South Malé Atoll in the Maldives archipelago in 2011 to unravel the stratigraphy and facies of the lagoonal deposits. Multichannel seismic lines show that the sedimentary succession locally reaches a maximum thickness of 15-20 m above an unconformity interpreted as the emersion surface which developed during the last glacial sea-level lowstand. Such depocenters are located in current-protected areas flanking the reef rim of the atoll or in infillings of karst dolinas. Much of the 50 m deep sea floor in the lagoon interior is current swept, and has no or very minor sediment cover. Erosive current moats line drowned patch reefs, whereas other areas are characterized by nondeposition. Karst sink holes, blue holes and karst valleys occur throughout the lagoon, from its rim to its center. Lagoonal sediments are mostly carbonate rubble and coarse-grained carbonate sands with frequent large benthic foraminifers, Halimeda flakes, red algal nodules, mollusks, bioclasts, and intraclasts, some of them glauconitic, as well as very minor ooids. Finer-grained deposits locally are deposited in current-protected areas behind elongated faros, i.e., small atolls which are part of the rim of South Malé Atoll. The South Malé Atoll is a current-flushed atoll, where water and sediment export with the open sea is facilitated by the multiple passes dissecting the atoll rim. With an elevated reef rim and tower-like reefs in the atoll interior it is an example of a leaky bucket atoll which shares characteristics of incipiently drowned carbonate banks or drowning sequences as known from the geological record.
Resumo:
Results of experimental studies of ion exchange properties of manganese and iron minerals in micronodules from diverse bioproductive zones of the World Ocean were considered. It was found that sorption behavior of these minerals was similar to that of ore minerals from ferromanganese nodules and low-temperature hydrothermal crusts. The exchange complex of minerals in the micronodules includes the major (Na**+, K**+, Ca**2+, Mg**2+, and Mn**2+) and subordinate (Ni**2+, Cu**2+, Co**2+, Pb**2+, and others) cations. Reactivity of theses cations increases from Pb**2+ and Co**2+ to Na**+ and Ca**2+. Exchange capacity of micronodule minerals increases from alkali to heavy metal cations. Capacity of iron and manganese minerals in oceanic micronodules increases in the following series: goethite < goethite + birnessite < todorokite + asbolane-buserite + birnessite < asbolane-buserite + birnessite < birnessite + asbolane-buserite < birnessite + vernadite ~= Fe-vernadite + Mn-feroxyhyte. Obtained data supplement available information on ion exchange properties of oceanic ferromanganese sediments and refine the role of sorption processes in redistribution of metal cations at the bottom water - sediment interface during micronodule formation and growth.
Resumo:
Instead of the isotopes Jo, Th, and Pa the radioactive daughter products Rn, Tn, and An were measured. It was possible to date four cores and to calculate the sedimentation rates. A rough estimation of the sedimentation in the northern part of the Indian Ocean can be given. In the middle part, the sedimentation rate is s = 0.32 cm/10**3 years, and near Africa and near India this rate increases to values of about2 cm/10**3 years.
Resumo:
During the Indian Ocean Expedition of R/V METEOR phytoplankton samples were taken with a multiple closing net (Multinet) at 103 stations. In this material the diatoms were investigated. In all 247 taxa could be identified which belong to 242 species and 5 varieties of formae of 80 genera. Of these 1 variety, 15 pecies, and 3 genera are newly described. New combinations were made for 18 species, and a number of old combinations was reinstated.
Resumo:
Analytical data on the basic salt composition in evaporation products of sea (ocean) water and of rain water falling on the central area of the Indian Ocean are examined. Both hot and low-temperature (vacuum) distillation were used. When ocean water evaporates under calm conditions, sea salts in molecular-dispersed state, metamorphosed in the upper boundary layer, enter the atmosphere in addition to water vapor ("salt respiration of the ocean"). Concentration of these salts is about 0.5 mg per liter of water evaporated. Salts also enter the atmosphere from a foam-covered ocean surface as aerosols.
Resumo:
We have determined the concentrations and isotopic composition of noble gases in old oceanic crust and oceanic sediments and the isotopic composition of noble gases in emanations from subduction volcanoes. Comparison with the noble gas signature of the upper mantle and a simple model allow us to conclude that at least 98% of the noble gases and water in the subducted slab returns back into the atmosphere through subduction volcanism before they can be admixed into the earth's mantle. It seems that the upper mantle is inaccessible to atmospheric noble gases due to an efficient subduction barrier for volatiles.
Resumo:
Recent revisions of the geological time scale by Kent and Gradstein (in press) suggest that, on the average, Cretaceous magnetic anomalies are approximately 10 m.y. older than in Larson and Hilde's (1975) previous time scale. These revised basement ages change estimates for the duration of alteration in the ocean crust, based on the difference between secondary-mineral isochron ages and magnetic isochron-crustal ages, from 3 to approximately 13 m.y. In addition to the revised time scale, Burke et al.'s (1982) new data on the temporal variation of 87Sr/86Sr in seawater allow a better understanding of the timing of alteration and more realistic determinations of water/rock ratios during seawater-basalt interaction. Carbonates from all DSDP sites which reached Layer 2 of Atlantic crust (Sites 105, 332, 417, and 418) are deposited within 10-15 m.y. of crustal formation from solutions with 87Sr/86Sr ratios identical to unaltered or contemporaneous seawater. Comparisons of the revised seawater curve with the 87Sr/86Sr of basement carbonates is consistent with a duration of approximately 10-15 m.y. for alteration in the ocean crust. Our preliminary Sr and 87Sr/86Sr data for carbonates from Hole 504B, on 5.9-m.y.-old crust south of the Costa Rica Rift, suggest that hydrous solutions from which carbonates precipitated contained substantial amounts of basaltic Sr. For this reason, carbonate 87Sr/86Sr cannot be used to estimate the duration of alteration at this site. A basalt-dominated alteration environment at Hole 504B is consistent with heat-flow evidence which indicates rapid sediment burial of crust at the Costa Rica Rift, sealing it from access by seawater and resulting in unusually low water/rock ratios during alteration.