765 resultados para southern Yellow Sea


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lithological and stratigraphical data obtained from 167 boreholes from the Schaabe spit in northeast Rügen and 46 radiocarbon datings mainly on peats, as well as interpretation of diatoms and palynological assemblages lead to a reappraisal of its sedimentational history and morphological development. The new local shoreline displacement curve is compared and discussed with the previous curve of Vorpommern (Southern Baltic Sea).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shipboard measurements of organohalogen compounds in air and surface seawater were conducted in the Canadian Arctic in 2007-2008. Study areas included the Labrador Sea, Hudson Bay, and the southern Beaufort Sea. High volume air samples were collected at deck level (6 m), while low volume samples were taken at 1 and 15 m above the water or ice surface. Water samples were taken within 7 m. Water concentration ranges (pg/L) were as follows: alpha-hexachlorocyclohexane (alpha-HCH) 465-1013, gamma-HCH 150-254, hexachlorobenzene (HCB) 4.0-6.4, 2,4-dibromoanisole (DBA) 8.5-38, and 2,4,6-tribromoanisole (TBA) 4.7-163. Air concentration ranges (pg/m**3) were as follows: alpha-HCH 7.5-48, gamma-HCH 2.1-7.7, HCB 48-71, DBA 4.8-25, and TBA 6.4-39. Fugacity gradients predicted net deposition of HCB in all areas, while exchange directions varied for the other chemicals by season and locations. Net evasion of alpha-HCH from Hudson Bay and the Beaufort Sea during open water conditions was shown by air concentrations that averaged 14% higher at 1 m than 15 m. No significant difference between the two heights was found over ice cover. The alpha-HCH in air over the Beaufort Sea was racemic in winter (mean enantiomer fraction, EF = 0.504 ± 0.008) and nonracemic in late spring-early summer (mean EF = 0.476 ± 0.010). This decrease in EF was accompanied by a rise in air concentrations due to volatilization of nonracemic alpha-HCH from surface water (EF = 0.457 ± 0.019). Fluxes of chemicals during the southern Beaufort Sea open water season (i.e., Leg 9) were estimated using the Whitman two-film model, where volatilization fluxes are positive and deposition fluxes are negative. The means ± SD (and ranges) of net fluxes (ng/m**2/d) were as follows: alpha-HCH 6.8 ± 3.2 (2.7-13), gamma-HCH 0.76 ± 0.40 (0.26-1.4), HCB -9.6 ± 2.7 (-6.1 to -15), DBA 1.2 ± 0.69 (0.04-2.0), and TBA 0.46 ± 1.1 ng/m**2/d (-1.6 to 2.0).

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Red Sea is a very young ocean, and is one of the most interesting areas on Earth (ocean in statu nascendi). It is the only ocean where hydrothermal activity associated with ore formation occurs in a sterile environment (anoxic, hot, saline). In addition, its geographical position means that it is predestined to record the monsoonal history of the region in detailed sedimentary sequences. The major aim of the present project is to investigate the dynamics of hydrothermal systems in selected Deeps (Atlantis-II, Discovery, Kebrit, Al Wajh), Additional palaeoceanographic and microbiological questions should also be addressed. Specific aims are: 1. To study the hydrographic changes in individual Deeps (hydrothermal region Atlantis-II) and to investigate the causes of the temperature increase in the last few years (increased heat flow - higher temperature of the brine supply - higher brine flow rates?). 2.a. To document the influence of the hydrothermal systems on the sedimentary organic matter in the Deeps. In particular, the thermogenic production and migration of hydrocarbons in the sediments will be studied. The complex formation mechanisms (bacterial, thermogenic) of short-chain hydrocarbons (trace gases) will also be examined, 2.b. in addition, the polar and macromolecular fraction in samples from the various deeps will be studied in order to elucidate the formation, structure and source of the macromolecular oil fraction. 3. To clarify the palaeoceanographic conditions, sea-level changes and the climatic history (relationship of the circulation system and nutrient supply to the monsoon) of the southern Red Sea. 4. To separate microorganisms from the brines and to characterise them in terms of their metabolic physiology and ecology, and to describe their taxonomy.