820 resultados para outcrop
Resumo:
Palynofloras of the Kocaçay and Cumaovasi basins in western Turkey that belong to a time-span from the late Early to late Middle Miocene (the late Burdigalian-Serravallian) are studied and compared with published palynofloras of Europe and Turkey. Palynological data and numerical climatic results obtained by the coexistence approach indicate palaeoclimate changed from warm subtropical to temperate during the late Burdigalian-Serravallian. Moreover, the palaeoclimates of the Kocacay and Cumaovasi basins are compared with continental palaeoclimatic records of coal-bearing sediments in western Turkey and current temperatures in the Izmir region. According to this comparison, palaeoclimatic results of these basins and other localities in western Turkey show a distinct difference as a result of orographic change. The palaeovegetation in the Kocaçay and Cumaovasi basins during the studied time-span was affected by palaeotopography and palaeoclimate. In these basins mixed mesophytic, coniferous forests, and swamp palaeovegetation generally predominated during the late Early-early Middle Miocene. The role of the herbaceous taxa increased at the end of the late Middle Miocene (the Serravallian) in the Kocaçay and Cumaovasi basins. It is obvious from the palynomorph data of these basins that grassland palaeovegetation started to expand in the late Middle Miocene. Unlike in Central Europe, where late Burdigalian and Langhian represent a period of outstanding warmth, the so-called Mid-Miocene Climatic Optimum, cold month mean temperatures reconstructed in this study point to an ongoing cooling trend, already from the late Burdigalian onwards, possibly related to increasing terrestrial conditions in the study area.
Resumo:
Paleosols crop out in the Sukhona River valley as several members up to 10 m thick embedded into the Salarevo Formation sediments. Principal characteristics of the paleosols include a dense network of root channels, indications of eluvial gley alteration, redistribution and formation of secondary carbonates represented by several generations, and formation of block-prismatic soil structure with specific clayey films at structural jointing faces. The paleosols are divided into a number of genetically interrelated horizons (from top to bottom): presumably organogenic accumulation (AElg), eluvial gley horizon (Elg), illuvial horizons (B1 and B2), illuvial gley horizon (Bg), and transitional horizons (ElBg and BElg). The paleosols formed under conditions of a semiarid climate with sharp seasonal or secular and multisecular oscillations of atmospheric precipitation. Such soils point to specific ecological environments existed in the northern semiarid belt of the Earth before the greatest (in Phanerozoic) biospheric crisis at the Permian-Triassic boundary.
Resumo:
Calcareous nannoplankton biostratigraphy has been worked out in the eastern Mediterranean utilizing deep-sea sediments recovered from DSDP Leg 42A Sites 375 and 376. These two drill sites were located approximately 55 km west of Cyprus on the Florence Rise. Sediments, ranging in age from early Miocene (Helicosphaera ampliaperta Zone) through Holocene, contain sufficient age-diagnostic species to recognize essentially all of the lowlatitude nannoplankton zones described by Bukry, although regional, secondary marker species are needed to define some zonal boundaries. Reworked Cretaceous and Paleogene nannoplankton occur throughout the stratigraphic interval studied, but not in quantities large enough to mask indigenous species. Sedimentation rates at Sites 375 and 376 were highest in the late Miocene and late Pleistocene. Open-marine, warm-water species of discoasters are present in significant numbers throughout the Miocene and Pliocene. Earliest Pliocene assemblages contain numerous specimens of ceratoliths. Nannoplankton in post-Messinian sediments at the drill sites and the Zanclean stratotype at Capo Rossello, Sicily, indicate that the base of the Amaurolithus tricorniculatus Zone (base of Triquetrorhabdulus rugosus Subzone) corresponds with the Miocene-Pliocene boundary.
Resumo:
In order to document changes in Holocene glacier extent and activity in NE Greenland (~73° N) we study marine sediment records that extend from the fjords (PS2631 and PS2640), across the shelf (PS2623 and PS2641), to the Greenland Sea (JM07-174GC). The primary bedrock geology of the source areas is the Caledonian sediment outcrop, including Devonian red beds, plus early Neoproterozoic gneisses and early Tertiary volcanics. We examine the variations in colour (CIE*), grain size, and bulk mineralogy (from X-ray diffraction of the <2 mm sediment fraction). Fjord core PS2640 in Sofia Sund, with a marked red hue, is distinct in grain size, colour and mineralogy from the other fjord and shelf cores. Five distinct grain-size modes are distinguished of which only one is associated with a coarse ice-rafting signal - this mode is rare in the mid- and late Holocene. A sediment unmixing program (SedUnMixMC) is used to characterize down-core changes in sediment composition based on the upper late Holocene sediments from cores PS2640 (Sofia Sund), PS2631 (Kaiser Franz Joseph Fjord) and PS2623 (south of Shannon Is), and surface samples from the Kara Sea (as an indicator of transport from the Russian Arctic shelves). Major changes in mineral composition are noted in all cores with possible coeval shifts centred c. 2.5, 4.5 and 7.5 cal. ka BP (±0.5 ka) but are rarely linked with changes in the grain-size spectra. Coarse IRD (>2 mm) and IRD-grain-size spectra are rare in the last 9-10 cal. ka BP and, in contrast with areas farther south (~68° N), there is no distinct IRD signal at the onset of neoglaciation. Our paper demonstrates the importance of the quantitative analysis of sediment properties in clarifying source to sink changes in glacial marine environments.
Resumo:
Famennian Stromatoporoidea from the Quasiendothyra communis Foraminiferal Zone and slightly younger strata from the Debnik anticline, southern Poland, form a succession of three consecutive assemblages. Assemblages 1 and 3 consist of representatives of the order Clathrodictyida, while assemblage 2 is dominated by the order Labechiida. The clathrodictyids are represented by the genus Gerronostroma, and labechiids are represented by the genus Stylostroma. Species assigned here to the genus Gerronostroma show a network of amalgamated pillars in the central part of the columns, a feature regarded by previous authors as typical of the genus Clavidictyon. Two new species, Stylostroma multiformis sp. nov. and Gerronostroma raclaviense sp. nov., are described. Stromatoporoids from southern Poland differ from the Famennian fauna of western Europe, showing affinity to eastern European and Siberian Stromatoporoidea.