450 resultados para on-ice
Resumo:
Strontium isotope stratigraphy was used to date five discrete horizons within CRP-1. Early and late Quaternary (0.87-1.3 Ma and 0-0.67 Ma respectively) age sediments overlie a major sequence boundary at 43.15 meters below sea floor (mbsf). This hiatus is estimated to account for ~16 m.y. of missing section. Early Miocene (16.6-~20.8-25 Ma) age deposits below this boundary are in turn cut by multiple erosion surface representing hiatus is of between 0.2 and 1.2 m.y. Estimated minimum sedimentation rates range between 0.9 and 2.8 cm/k.y. in the Quaternary, and 1.5 and 6.4 cm/ky in the lower Miocene.
Resumo:
Benthic foraminifer and delta13C data from Site 849, on the west flank of the East Pacific Rise (0°11 'N, 110°31'W; 3851 m), give relatively continuous records of deep Pacific Ocean stable isotope variations between 0 and 5 Ma. The mean sample spacing is 4 k.y. Most analyses are from Cibicides wuellerstorfi, but isotopic offsets relative to Uvigerina peregrina appear roughly constant. Because of its location west of the East Pacific Rise, Site 849 yields a suitable record of mean Pacific Ocean delta13C, which approximates a global oceanic signal. The ~100-k.y.-period climate cycle, which is prevalent in delta18O does not dominate the long-term delta13C record. For delta13C, variations in the ~400- and 41-k.y. periods are more important. Phase lags of delta13C relative to ice volume in the 41- and 23-k.y. bands are consistent with delta13C as a measure of organic biomass. A model-calculated exponential response time of 1-2 k.y. is appropriate for carbon stored in soils and shallow sediments responding to glacial-interglacial climate change. Oceanic delta13C leads ice volume slightly in the 100-k.y. band, and this suggests another process such as changes in continental weathering to modulate mean river delta13C at long periods. The delta13C record from Site 849 diverges from that of Site 677 in the Panama Basin mostly because of decay of 13C-depleted organic carbon in the relatively isolated Panama Basin. North Atlantic to Pacific delta13C differences calculated using published data from Sites 607 and 849 reveal variations in Pliocene deep water within the range of those of the late Quaternary. Maximum delta13C contrast between these sites, which presumably reflects maximum influx of high-delta13C northern source water into the deep North Atlantic Ocean, occurred between 1.3 and 2.1 Ma, well after the initiation of Northern Hemisphere glaciation. Export of high-delta13C North Atlantic Deep Water from the Atlantic to the circumpolar Antarctic, as recorded by published delta13C data from Subantarctic Site 704, appears unrelated to the North Atlantic-Pacific delta13C contrast. To account for this observation, we suggest that deep-water formation in the North Atlantic reflects northern source characteristics, whereas export of this water into the circumpolar Antarctic reflects Southern Hemisphere wind forcing. Neither process appears directly linked to ice-volume variations.
Resumo:
Strontium isotope stratigraphy was used to date 16 discrete horizons within the CRP-2/2A drillhole. Reworked Quaternary (<1.7 Ma) and possible Pliocene (<2.4 Ma) sediments overlie a major sequence boundary at 25.92 meters below sea floor (mbsf). This hiatus is estimated to account for c. 16 Myr of missing section. Early Miocene to ?earliest Oligocene (c. 18.6 to >31 Ma) deposits below this boundary were cut by multiple erosion surfaces of uncertain duration. Strontium isotope ages are combined with 40Ar/39Ar dates, diatom and calcareous nannofossil datum and a palaeomagnetic polarity zonation, to produce an age model for the core.
Resumo:
The Cenozoic Victoria Land Basin (VLB) stratigraphic section penetrated by CRP-3 is mostly of Early Oligocene age. It contains an array of lithofacies comprising fine-grained mudrocks, interlaminated and interbedded mudrocks/sandstones, mud-rich and mud-poor sandstones, conglomerates and diamctites that are together interpreted as the products of shallow marine to possibly non-marine environments of deposition, affected by the periodic advance and retreat of tidewater glaciers. This lithofacies assemblage can be readily rationalised using the facies scheme designed originally for CRP-2/2A, and published previously. The uppermost 330 metres below sea floor (mbsf) shows a cyclical arrangement of lithofacies also similar to that recognised throughout CRP-2/2A, and interpreted to reflect cyclical variations in relative sea-level driven by ice volume fluctuations ('Motif A'). Between 330 and 480 mbsf, a series of less clearly cyclical units, generally fining-upward but nonetheless incorporating a significant subset of the facies assemblage, has been identified and noted in the Initial Report as 'Motif B' Below 480 mbsf, the section is arranged into a repetitive succession of fining-upward units, each of which comprises dolerite clast conglomerate at the base passing upward into relatively thick intervals of sandstones. The cycles present down 480 mbsf are defined as sequences, each interpreted to record cyclical variation of relative sea-level. The thickness distribution of sequences in CRP-3 provides some insights into the geological variables controlling sediment accumulation in the Early Oligocene section. The uppermost part of the section in CRP-3 comprises two or three thick, complete sequences that show a broadly symmetrical arrangement of lithofacies (similar to Sequences 9-11 in CRP-2/2A). This suggests a period of relatively rapid tectonic subsidence, which allowed preservation of the complete facies cycle. Below Sequence 3, however, is a considerable interval of thin, incomplete and erosionally truncated sequences (4-23), which incorporates both the remainder of Motif A sequences and all Motif B sequences recognised. The thinner and more truncated sequences suggest sediment accumulation under conditions of reduced accommodation, and given the lack of evidence for glacial conditions (see Powell et al., this volume) tends to argue for a period of reduced tectonic subsidence. The section below 480 mbsf consists of a series of fining-upward, conglomerate to sandstone intervals which cannot be readily interpreted in terms of relative sea-level change. A relatively mudrock-rich interval above the basal conglomerate/breccia (782-762 mbsf) may record initial flooding of the basin during early rift subsidence. The lithostratigraphy summarised above has been linked to seismic reflection data using depth conversion techniques (Henrys et al., this volume). The three uppermost reflectors ('o', 'p' and 'q') correlate to the package of thick sequences 1-3, and several deeper reflectors can also be correlated to sequence boundaries. The package of thick Sequences 1-3 shows a sheet-like cross-sectional geometry on seismic reflection lines, unlike the similar package recognised in CRP-2/2A.
Resumo:
Cape Roberts Project drill core 3 (CRP-3) was obtained from Roberts ridge, a sea-floor high located at 77°S, 12 km offshore from Cape Roberts in western McMurdo Sound, Antarctica. The recovered core is about 939 m long and comprises strata dated as being early Oligocene (possibly latest Eocene) in age, resting unconformably on ~116 m of basement rocks consisting of Palaeozoic Beacon Supergroup sediments. The core includes ten facies commonly occurring in five major associations that are repeated in particular sequences throughout the core and which are interpreted as representing different depositional environments through time. Depositional systems inferred to be represented in the succession include: outer shelf, inner shelf, nearshore to shoreface each under iceberg influence, deltaic and/or grounding-line fan, and ice proximal-ice marginal-subglacial (mass flow/rainout diamictite/subglacial till) singly or in combination. The record is taken to represent the initial talus/alluvial fan setting of a glaciated rift margin adjacent to the block-uplifted Transantarctic Mountains. Development of a deltaic succession upcore was probably associated with the formation of palaeo-Mackay valley with temperate glaciers in its headwaters. At that stage glaciation was intense enough to support glaciers ending in the sea elsewhere along the coast, but a local glacier was fluctuating down to the sea by the time the youngest part of CRP-3 was being deposited. Changes in palaeoenvironmental interpretations in this youngest part of the core are used to estimate relative glacial proximity to the drillsite through time. These inferred glacial fluctuations are compared with the global d180 and Mg/Ca curves to evaluate the potential of glacial fluctuations on Antarctica for influencing these records of global change. Although the comparisons are tentative at present, the records do have similarities, but there are also some differences that require further evaluation.
Resumo:
The upper 1200 m of pre-Pliocene sediment recovered by Cape Roberts Project (CRP) drilling off the Victoria Land coast of Antarctica between 1997-1999 has been subdivided into 54 unconformity-bound stratigraphic sequences, spanning the period c. 32 to 17 Ma. The sequences are recognised on the basis of the cyclical vertical stacking of their constituent lithofacies, which are enclosed by erosion surfaces produced during the grounding of the advancing ice margin onto the sea floor. Each sequence represents deposition in a range of offshore shelf to coastal glacimarine sedimentary environments during oscillations in the ice margin across the Western Ross Sea shelf, and coeval fluctuations in water depth. This paper applies spectral analysis techniques to depth- and time-series of sediment grain size (500 samples) for intervals of the core with adequate chronological data. Time series analysis of 0.5-l.0m-spaced grainsize data spanning sequences 9-11 (CRP-2/2A) and sequences 1-7 (CRP-3) suggests that the length of individual sequences correspond to Milankovitch frequencies, probably 41 k.y., but possibly as low as 100 k.y. Higher frequency periodic components at 23 k.y. (orbital precession) and 15-10 k.y. (sub-orbital) are recognised at the intrasequence-scale, and may represent climatic cycles akin to the ice rafting episodes described in the North Atlantic Ocean during the Quaternary. The cyclicity recorded by glacimarine sequences in CRP core provides direct evidence from the periphery of Antarctica for orbital oscillations in the size of the Oligocene-Early Miocene East Antarctic Ice Sheet.
Resumo:
We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models
Resumo:
A suite of petrophysical properties - velocity, resistivity, bulk density, porosity, and matrix density - was measured on 88 core plugs from the CRP-3 drillhole. Core-plug bulk densities were used to recalibrate both whole-core and downhole bulk density logs. Core-plug measurements of matrix density permit conversion of the whole-core and downhole bulk density logs to porosity. Both velocity and formation factor (a normalized measure of resistivity) are strongly correlated with porosity. The velocity/porosity pattern is similar to that for the lower part of CRP-2A and is consistent with the empirical relationship for sandstones. Core-plug and whole-core measurements of P-wave velocity at atmospheric pressure exhibit excellent agreement. Measurements of velocity as a function of pressure indicate a significantly higher velocity sensitivity to pressure than has been observed at CRP-1 and CRP-2A; rebound or presence of microcracks at CRP-3 may be responsible. The percentage difference between velocities at in situ pressures and atmospheric pressures increases downhole from 0% at the seafloor to 9% at the bottom. This pattern can be used to correct whole-core velocity data, measured at atmospheric pressure, to in situ velocities for depth-to-time conversion and associated comparison to the seismic profile across the drillsite
Resumo:
Cape Roberts drillhole CRP-3 in the northern part of McMurdo Sound (Ross Sea, Antarctica) targeted the western margin of the Victoria Land basin to investigate Neogene to Palaeogene climatic and tectonic history by obtaining continuous core and downhole logs (Cape Roberts Science Team, 2000). The CRP-3 drillhole extended to 939.42 mbsf (meters below seafloor) at a water depth of 297 m. The first downhole measurements after drilling were the temperature and salinity logs. Both were measured at the beginning and at the end of each of the three logging phases. Although an equilibrium temperature state may not have been fully reached after drilling, the temperature and salinity profiles seem to be scarcely disturbed. The average overall temperature gradient calculated from all temperature measurements is 28.5 K/km; remarkably lower than the temperature gradients found in other boreholes in the western Ross See and the Transantarctic Mountains. Anomalies in the salinity profiles at the beginning of each logging phase were no longer present at the end of the corresponding logging phase. This pattern indicates that drilling mud invaded the formation during drilling operations and flowed back into the borehole after drilling ceased. Thus, zones of temperature and salinity anomalies identify permeable zones in the formation and may be pathways for fluid flow. Radiogenic heat production, calculated from the radionuclide contents, is relatively low, with average values between 0.5 and 1.0 pW/m3. The highest values (up to 2 µW/m3) were obtained for the lower part of the Beacon Sandstone below 855 mbsf. The heat flow component due to radiogenic heat production integrated over the entire borehole is 0.7 mW/m2. Thermal conductivities range from 1.3 to 3 W/mK with an average value of 2.1 W/mK over the Tertiary section. Together with the average temperature gradient of 28.5 K/km this yields an average heat flow value of 60 mW/m2.