300 resultados para isotopic change rate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coccolithophore Calcidiscus leptoporus was grown in batch culture under nitrogen (N) as well as phosphorus (P) limitation. Growth rate, particulate inorganic carbon (PIC), particulate organic carbon (POC), particulate organic nitrogen (PON), and particulate organic phosphorus (POP) production were determined and coccolith morphology was analysed. While PON production decreased by 70% under N-limitation and POP production decreased by 65% under P-limitation, growth rate decreased by 33% under N- as well as P-limitation. POC as well as PIC production (calcification rate) increased by 27% relative to the control under P-limitation, and did not change under N-limitation. Coccolith morphology did not change in response to either P or N limitation. While these findings, supported by a literature survey, suggest that coccolith morphogenesis is not hampered by either P or N limitation, calcification rate might be. The latter conclusion is in apparent contradiction to our data. We discuss the reasons for this inference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variation of the d13C of living (Rose Bengal stained) deep-sea benthic foraminifera is documented from two deep-water sites (~2430 and ~3010 m) from a northwest Atlantic Ocean study area 275 km south of Nantucket Island. The carbon isotopic data of Hoeglundina elegans and Uvigerina peregrina from five sets of Multicorer and Soutar Box Core samples taken over a 10-month interval (March, May, July, and October 1996 and January 1997) are compared with an 11.5 month time series of organic carbon flux to assess the effect of organic carbon flux on the carbon isotopic composition of dominant taxa. Carbon isotopic data of Hoeglundina elegans at 3010 m show 0.3 per mil lower mean values following an organic carbon flux maximum resulting from a spring phytoplankton bloom. This d13C change following the spring bloom is suggested to be due to the presence of a phytodetritus layer on the seafloor and the subsequent depletion of d13C in the pore waters within the phytodetritus and overlying the sediment surface. Carbon isotopic data of H. elegans from the 2430 m site show an opposite pattern to that found at 3010 m with a d13C enrichment following the spring bloom. This different pattern may be due to spatial variation in phytodetritus deposition and resuspension or to a limited number of specimens recovered from the March 1996 cruise. The d13C of Uvigerina peregrina at 2430 m shows variation over the 10 month interval, but an analysis of variance shows that the variability is more consistent with core and subcore variability than with seasonal changes. The isotopic analyses are grouped into 100 µm size classes on the basis of length measurements of individual specimens to evaluate d13C ontogenetic changes of each species. The data show no consistent patterns between size classes in the d13C of either H. elegans or U. peregrina. These results suggest that variation in organic carbon flux does not preferentially affect particular size classes, nor do d13C ontogenetic changes exist within the >250 to >750 µm size range for these species at this locality. On the basis of the lack of ontogenetic changes a range of sizes of specimens from a sample can be used to reconstruct d13C in paleoceanographic studies. The prediction standard deviation, which is composed of cruise, core, subcore, and residual (replicate) variability, provides an estimate of the magnitude of variability in fossil d13C data; it is 0.27 per mil for H. elegans at 3010 m and 0.4 per mil for U. peregrina at the 2430 m site. Since these standard deviations are based on living specimens, they should be regarded as minimum estimates of variability for fossil data based on single specimen analyses. Most paleoceanographic reconstructions are based on the analysis of multiple specimens, and as a result, the standard error would be expected to be reduced for any particular sample. The reduced standard error resulting from the analysis of multiple specimens would result in the seasonal and spatial variability observed in this study having little impact on carbon isotopic records.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in El Niño-Southern Oscillation (ENSO) variability are difficult to extract from paleoceanographic reconstructions because they are superimposed on changes in seasonal variability that modulate the first-order climate signal. Here we address this problem by reconstructing thermocline structure from a marine sediment core retrieved from the eastern equatorial Pacific. At the core location, changes in hydrologic parameters within the thermocline are linked to ENSO activity, with a reduced influence of seasonal variability compared to surface waters. We performed repeated isotopic analyses (d18O) on single specimens of the thermocline-dwelling planktonic foraminifera Neogloboquadrina dutertrei at several targeted time periods over the last 50 ka to extract the total thermocline variance, a parameter supposed to reveal changes in ENSO. No fundamental changes in amplitude and frequency of the events were detected despite differences in climatic background. However, our data suggest that long-term variations in the thermocline variability occurred over the last 50 ka, with the highest and lowest ENSO activities occurring during the last glacial period and the Last Glacial Maximum, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Canary Basin lies in a region of strong interaction between the atmospheric and ocean circulation systems: Trade winds drive seasonal coastal upwelling and dust storm outbreaks from the neighbouring Sahara desert are the major source of terrigenous sediment. To investigate the forcing mechanisms for dust input and wind strength in the North Canary Basin, the temporal pattern of variability of sedimentological and geochemical proxy records has been analysed in two sediment cores between latitudes 30°30'N and 31°40'N. Spectral analysis of the dust proxy records indicates that insolation changes related to eccentricity and precession are the main periods of temporal variation in the record. Si/Al and grain-size of the terrigenous fraction show an increase in glacial-interglacial transitions while Al concentration and Fe/Al ratio are both in phase with minima in the precessional index. Hence, the results obtained show that the wind strength was intensified at Terminations. At times of maxima of Northern Hemisphere seasonal insolation, when the African monsoon was enhanced, the North Canary Basin also received higher dust input. This result suggests that the moisture brought by the monsoon may have increased the availability of dust in the source region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uptake of anthropogenic CO2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state (omega arag). The objectives of this long-term study were to investigate the viability of two ecologically important reef-building coral species, massive Porites sp. and Stylophora pistilata, exposed to high pCO2(or low pH) conditions and to observe possible changes in physiologically related parameters as well as skeletal isotopic composition. Fragments of Porites sp. and S. pistilata were kept for 6-14 months under controlled aquarium conditions characterized by normal and elevated pCO2 conditions, corresponding to pHTvalues of 8.09, 7.49, and 7.19, respectively. In contrast with shorter, and therefore more transient experiments, the long experimental timescale achieved in this study ensures complete equilibration and steady state with the experimental environment and guarantees that the data provide insights into viable and stably growing corals. During the experiments, all coral fragments survived and added new skeleton, even at seawater omega arag <1, implying that the coral skeleton is formed by mechanisms under strong biological control. Measurements of boron (B), carbon (C) and oxygen (O) isotopic composition of skeleton, C isotopic composition of coral tissue and symbiont zooxanthellae, along with physiological data (such as skeletal growth, tissue biomass, zooxanthellae cell density and chlorophyll concentration) allow for a direct comparison with corals living under normal conditions and sampled simultaneously. Skeletal growth and zooxanthellae density were found to decrease, whereas coral tissue biomass (measured as protein concentration) and zooxanthellae chlorophyll concentrations increased under high pCO2 (low pH) conditions. Both species showed similar trends of delta11B depletion and delta18O enrichment under reduced pH, whereas the delta13C results imply species-specific metabolic response to high pCO2 conditions. The skeletal delta11B values plot above seawater delta11B vs. pH borate fractionation curves calculated using either the theoretically derived deltaB value of 1.0194 (Kakihana et al., Bull. Chem. Soc. Jpn. 50(1977), 158) or the empirical deltaB value of 1.0272 (Klochko et al., EPSL 248 (2006), 261). However, the effective deltaB must be greater than 1.0200 in order to yield calculated coral skeletal delta11B values for pH conditions where omega arag >1. The delta11B vs. pH offset from the literature seawater delta11B vs. pH fractionation curves suggests a change in the ratio of skeletal material laid down during dark and light calcification and/or an internal pH regulation, presumably controlled by ion-transport enzymes. Finally, seawater pH significantly influences skeletal delta13C and delta18O. This must be taken into consideration when reconstructing paleo-environmental conditions from coral skeleton

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The carbonate chemistry of seawater is usually not considered to be an important factor influencing calcium-carbonate-precipitation by corals because surface seawater is supersaturated with respect to aragonite. Recent reports, however, suggest that it could play a major role in the evolution and biogeography of recent corals. We investigated the calcification rates of five colonies of the zooxanthellate coral Stylophora pistillata in synthetic seawater using the alkalinity anomaly technique. Changes in aragonite saturation from 98% to 585% were obtained by manipulating the calcium concentration. The results show a nonlinear increase in calcification rate as a function of aragonite saturation level. Calcification increases nearly 3-fold when aragonite saturation increases from 98% to 390%, i.e., close to the typical present saturation state of tropical seawater. There is no further increase of calcification at saturation values above this threshold. Preliminary data suggest that another coral species, Acropora sp., displays a similar behaviour. These experimental results suggest: (1) that the rate of calcification does not change significantly within the range of saturation levels corresponding to the last glacial-interglacial cycle, and (2) that it may decrease significantly in the future as a result of the decrease in the saturation level due to anthropogenic release of CO2 into the atmosphere. Experimental studies that control environmental conditions and seawater composition provide unique opportunities to unravel the response of corals to global environmental changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the possible contribution of ocean floor sediments during the genesis of the volcanism of Vanuatu (New Hebrides) active margin, we have determined the balance of Sr isotopes and K, Rb and Sr contents for the stratigraphic column of site 286 (leg 30, DSDP). This site is located on the oceanic plate that will be subducted. Analyses have been performed on sedimentary and igneous rocks, before and after acid leaching. The Sr isotopic data do not support the occurrence of some continental component in arc magmas of this active margin which is really intraoceanic. It is demonstrated that the d'Entrecasteaux fracture zone results from the intense fracturing of typical oceanic crust. The analyses of the volcanogenic components of the sediments show a change in the source of volcanoclastic detritus from the Loyalty islands in the Eocene to the volcanic arc of Vanuatu (New Hebrides) during Pliocene and Quaternary times. The determined balance of Sr isotopes and of K, Rb, Sr contents, may be used for calculation of multicomponent melting mixing models for the origin of Vanuatu arc magmas, but we emphasize that in these models the Sr isotopes cannot be considered as an appropriated tracer of sediment contribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The upper Tortonian Metochia marls on the island of Gavdos provide an ideal geological archive to trace variations in Aegean sediment supply as well as changes in the North African monsoon system. A fuzzy-cluster analysis on the multiproxy geochemical and rock magnetic dataset of the astronomically tuned sedimentary succession shows a dramatic shift in the dominance of 'Aegean tectonic' clusters to 'North African climate' clusters. The tectonic signature, traced by the starvation of the Cretan sediment, now enables to date the late Tortonian basin foundering on Crete, related to the tectonic break-up of the Aegean landmass, at c. 8.2 Ma. The synchronous decrease in the North African climate proxies is interpreted to indicate a change in the depositional conditions of the sink rather than a climatic change in the African source. This illustrates that interpretations of climate proxies require a multiproxy approach which also assesses possible contributions of regional tectonism.