366 resultados para grain dust


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparison of a last interglacial annually laminated and varve counted maar lake record from the Eifel/Germany, with a laminated lake sediment record from Northern Germany shows, that high resolution cores can be correlated across central Europe by dust/loess content, if the resolution of grain size data is on the order of decades/centuries. Phases of widespread dust dispersal are the same as the cold events in the Greenland ice and North Atlantic sea surface temperature patterns. The first occurrence of dust in Northern Germany and in the Eifel is during the Late Eemian Aridity Pulse (LEAP, Sirocko et al. 2005) which is called C26 in ocean records (McManus, same vol.). This cold and arid event occurred exactly at the time of the last glacial inception at 118 kyr. Vegetation change in Northern Germany and the Eifel is out of phase after the LEAP. A taiga/tundra vegetation charcterizes Northern Germany between the LEAP and C24, whereas at the same time a Carpinus dominated temperate forest spread in the Eifel region, comparable to the Carpinus dominated forests in France (Sánchez Goñi et al., 2005). A drastic cooling, associated with widespread aridity, came with the C24 cold event, when the vegetation of central Europe changed to a tundra or shrub tundra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diatoms were studied quantitatively in six latest Quaternary (~70 kyr B.P. to Recent) piston cores from the westernmost Mediterranean, the Alboran Basin, and the Atlantic region immediately to the west of the Straits of Gibraltar. The Atlantic cores completely lack diatoms. In the Alboran Basin, diatoms are common from late Stage 3 (~27.5 kyr B.P.) to Termination lb (9 kyr B.P.) and in Recent core tops, but are absent in the other latest Quaternary intervals. Maximum accumulation of diatoms and highest abundance of species normally in sediments associated with increased productivity occurred during the latest Quaternary deglaciation, in the first phase of Termination I (~14.8 kyr B.P.). In the modern Alboran Basin, a region of high biological productivity occurs immediately east of the Gibraltar Straits. This high productivity results from upwelling associated with the interaction between the Atlantic inflow and the bottom topography near the Spanish coast. The upwelled nutrient-rich waters are then advected to the east and southeast by the surficial anticyclonic gyral circulation. Late Quaternary variations in diatom abundance are considered to reflect changes in this upwelling intensity with highest diatom abundances inferred to result from increased upwelling associated with an intensification of the anticyclonic gyral circulation. Highest inferred upwelling rates occurred during the first phase of latest Quaternary deglaciation. It is possible that an intensification of circulation within the Mediterranean Basin as a whole occurred from late Stage 3 to mid Termination I because widespread hiatus formation has been reported at this time in the Straits of Sicily due to an increase in the formation of intermediate waters. Diatoms were not preserved in other latest Quaternary intervals due to insufficient productivity to counterbalance their dissolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequences of late Pliocene to Holocene sediment lap onto juvenile igneous crust within 20 km of the Juan de Fuca Ridge in northwestern Cascadia Basin, Pacific Ocean. The detrital modes of turbidite sands do not vary significantly within or among sites drilled during Leg 168 of the Ocean Drilling Program. Average values of total quartz, total feldspar, and unstable lithic fragments are Q = 35, F = 35, and L = 30. Average values of monocrystalline quartz, plagioclase, and K-feldspar are Qm = 46, P = 49, and K = 5, and the average detrital modes of polycrystalline quartz, volcanic-rock fragments, and sedimentary-rock plus metamorphic-rock fragments are Qp = 16, Lv = 43, and Lsm = 41. Likely source areas include the Olympic Peninsula and Vancouver Island; sediment transport was focused primarily through the Strait of Juan de Fuca, Juan de Fuca Channel, Vancouver Valley, and Nitinat Valley. Relative abundance of clay minerals (<2-µm-size fraction) fluctuate erratically with depth, stratigraphic age, and sediment type (mud vs. turbidite matrix). Mineral abundance in mud samples are 0%-35% smectite (mean = 8%), 18%-59% illite (mean = 40%), and 29%-78% chlorite + kaolinite (mean = 52%). We attribute the relatively low content of smectite to rapid mechanical weathering of polymictic source terrains, with little or no input of volcanic detritus from the Columbia River. The scatter in clay mineralogy probably was caused by converging of surface currents, turbidity currents, and near-bottom nepheloid clouds from several directions, as well as subtle changes in glacial vs. interglacial weathering products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very fine quartz sand was examined from Paleogene and Neogene sediments of ODP Sites 693, 694, 695, 696, and 697 to determine their grain roundness using Fourier analysis and SEM surface texture characteristics. The objective of this study was to identify grain roundness and surface texture characteristics unique to East (Site 693) and West (Sites 695, 696, and 697) Antarctica and to glacial regimes. Once identified, these distinguishing features could then be used to determine changes in source area and glacial conditions in the central Weddell Sea Basin (Site 694). Three end members of very fine quartz sand are recognized in the Oligocene to Pleistocene sediments of the Weddell Sea: angular, rounded, and intermediate. End member 1 (angular) consists of extremely angular grains with numerous fracture textures. Previous investigations suggested that these sands are derived from crystalline rocks that fractured during formation or deformation and/or were exposed to weathering by ice. In this study, however, the correlation of angularity with ice activity is problematical as the most angular sands were recovered in the lower Oligocene sediments of the South Orkney Microcontinent, a period of temperate climatic conditions. End member 3 (rounded) consists of rounded grains with chemically and mechanically produced surface textures. These sands are presumed to be derived from the Beacon-type rocks in East Antarctica and the sedimentary deposits of the Northern Antarctic Peninsula. End member 2 (intermediate) grains display crystalline nodes and grain embayments. They are thought to be derived from felsic intrusives, East Antarctic quartzites, basement metamorphics of the South Orkney Microcontinent, and/or the Andean intrusive series of West Antarctica. Unfortunately, no features unique to either the East or West Antarctic sediment sources or to glacial conditions could be isolated. Therefore, the objective of determining provenance changes and sediment erosion and transport mechanisms could not be achieved using this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of <10?ppm in atmospheric CO2 due to enhanced efficiency of the biological pump. This is followed by a further ~10?ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabric of sediments recovered at sites drilled on the Indus Fan, Owen Ridge, and Oman margin during Ocean Drilling Program Leg 117 was examined by scanning electron microscopy to document changes that accompany sediment burial. Two sediment types were studied: (1) biogenic sediments consisting of a variety of marly nannofossil and nannofossil oozes and chalks and (2) terrigenous sediments consisting of fine-grained turbidites deposited in association with the Indus Fan. Biogenic sediments were examined with samples from the seafloor to depths of 306 m below seafloor (mbsf) on the Owen Ridge (Site 722) and 368 mbsf on the Oman margin (Sites 723 and 728). Over these depth ranges the biogenic sediments are characterized by a random arrangement of microfossils and display little chemical diagenetic alteration. The microfossils are dispersed within a fine-grained matrix that is predominantly microcrystalline carbonate particles on the Owen Ridge and clay and organic matter on the Oman margin. Sediments with abundant siliceous microfossils display distinct, open fabrics with high porosity. Porosity reduction resulting from gravitational compaction appears to be the primary process affecting fabric change in the biogenic sediment sections. Fabric of illite-rich clayey silts and silty claystones from the Indus Fan (Site 720) and Owen Ridge (Sites 722 and 731) was examined for a composite section extending from 45 to 985 mbsf. In this section fabric of the fine-grained turbidites changes from one with small flocculated clay domains, random particle arrangement, and high porosity to a fabric with larger domains, strong preferred particle orientation roughly parallel to bedding, and lower porosity. These changes are accomplished by a growth in domain size, primarily through increasing face-to-face contacts, and by particle reorientation which is characterized by a sharp increase in alignment with bedding between 200 and 400 mbsf. Despite extensive particle reorientation, flocculated clay fabric persists in the deepest samples examined, particularly adjacent to silt grains, and the sediments lack fissility. Fabric changes over the 45-985 mbsf interval occur in response to gravitational compaction. Porosity reduction and development of preferred particle orientation in the Indus Fan and Owen Ridge sections occur at greater depths than outlined in previous fabric models for terrigenous sediments as a consequence of a greater abundance of silt and a greater abundance of illite and chlorite clays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comprehensive investigations revealed that modern deposits in the northern Caspian Sea involve terrigenous sands and aleurites with admixture of detritus and intact bivalve shells, including coquina. Generally, these deposits overlay dark grayish viscous clays. Similar geological situation occurs in the Volga River delta; however, local deposits are much poorer in biogenic constituents. Illite prevails among clay minerals. In coarse aleurite fraction (0.100-0.050 mm) heavy transparent minerals are represented mostly by epidotes, while light minerals - mostly by quartz and feldspars. Sedimentary material in the Volga River delta is far from completely differentiated into fractions due to abundant terrigenous inflows. Comparatively better grading of sediments from the northern Caspian Sea is due to additional factors such as bottom currents and storms. When passing from the Volga River delta to the northern Caspian Sea, sediments are enriched in rare earth elements (except Eu), Ca, Au, Ni, Se, Ag, As, and Sr, but depleted in Na, Rb, Cs, K, Ba, Fe, Cr, Co, Sc, Br, Zr, ??, U, and Th. Concentrations of Zn remain almost unchanged. Sedimentation rates and types of recent deposits in the northern Caspian Sea are governed mainly by abundant runoff of the Volga River.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sand-silt-clay distribution was determined on 10-cm**3 sediment samples collected at the time the cores were split and described. The sediment classification used here is that of Shepard (1954), with the sand, silt, and clay boundaries based on the Wentworth (1922) scale. Thus, the sand, silt, and clay fractions are composed of particles whose diameters range from 2000 to 62.5 µm, 62.5 to 3.91 µm, and less than 3.91 µm, respectively. This classification is applied regardless of sediment type and origin; therefore, the sediment names used in this table may differ from those used elsewhere in this volume, e.g., a silt composed of nannofossils in this table may be called a nannofossil ooze in a site-summary chapter.