988 resultados para delta 18O, endogenic calcite
Resumo:
Variations in the strength of the North Atlantic Ocean thermohaline circulation have been linked to rapid climate changes during the last glacial cycle through oscillations in North Atlantic Deep Water formation and northward oceanic heat flux. The strength of the thermohaline circulation depends on the supply of warm, salty water to the North Atlantic, which, after losing heat to the atmosphere, produces the dense water masses that sink to great depths and circulate back south. Here we analyse two Caribbean Sea sediment cores, combining Mg/Ca palaeothermometry with measurements of oxygen isotopes in foraminiferal calcite in order to reconstruct tropical Atlantic surface salinity during the last glacial cycle. We find that Caribbean salinity oscillated between saltier conditions during the cold oxygen isotope stages 2, 4 and 6, and lower salinities during the warm stages 3 and 5, covarying with the strength of North Atlantic Deep Water formation. At the initiation of the Bølling/Allerød warm interval, Caribbean surface salinity decreased abruptly, suggesting that the advection of salty tropical waters into the North Atlantic amplified thermohaline circulation and contributed to high-latitude warming.
Resumo:
To investigate the use of benthic foraminifera as a means to document ancient methane release, we determined the stable isotopic composition of tests of live (Rose Bengal stained) and dead specimens of epibenthic Fontbotia wuellerstorfi, preferentially used in paleoceanographic reconstructions, and of endobenthic high-latitude Cassidulina neoteretis and Cassidulina reniforme from a cold methane-venting seep off northern Norway. We collected foraminiferal tests from three push cores and nine multiple cores obtained with a remotely operated vehicle and a video-guided multiple corer, respectively. All sampled sites except one control site are situated at the Håkon Mosby mud volcano (HMMV) on the Barents Sea continental slope in 1250 m water depth. At the HMMV in areas densely populated by pogonophoran tube worms, d13C values of cytoplasm-containing epibenthic F. wuellerstorfi are by up to 4.4 per mil lower than at control site, thus representing the lowest values hitherto reported for this species. Live C. neoteretis and C. reniforme reach d13C values of -7.5 and -5.5 per mil Vienna Pee Dee Belemnite (VPDB), respectively, whereas d13C values of their empty tests are higher by 4 per mil and 3 per mil. However, d13C values of empty tests are never lower than those of stained specimens, although they are still lower than empty tests from the control site. This indicates that authigenic calcite precipitates at or below the sediment surface are not significantly influencing the stable isotopic composition of foraminiferal shells. The comparatively high d13C results rather from upward convection of pore water and fluid mud during active methane venting phases at these sites. These processes mingle tests just recently calcified with older ones secreted at intermittent times of less or no methane discharge. Since cytoplasm-containing specimens of suspension feeder F. wuellerstorfi are almost exclusively found attached to pogonophores, which protrude up to 3 cm above the sediment, and d13C values of bottom-water-dissolved inorganic carbon (DIC) are not significantly depleted, we conclude that low test d13C values of F. wuellerstorfi are the result of incorporation of heavily 13C-depleted methanotrophic biomass that these specimens feed on rather than because of low bottom water d13CDIC. Alternatively, the pogonophores, which are rooted at depth in the upper sediment column, may serve as a conduit for depleted d13CDIC that ultimately influences the calcification process of F. wuellerstorfi attached to the pogonophoran tube well above the sediment/water interface. The lowest d13C of live specimens of the endobenthic C. neoteretis and C. reniforme are within the range of pore water d13CDIC values, which exceed those that could be due to organic matter decomposition, and thus, in fact, document active methane release in the sediment.
Resumo:
An original method of paleotemperature analysis on planktonic foraminifera is substantiated and actively used for stratigraphy of bottom sediments and paleoceanologic reconstructions. On the base of this method, as well as on lithological, geochemical, and oxygen isotope data, radiocarbon dating, constructions of other investigators, etc., the main features of dynamic Quaternary paleoceanology of the Atlantic Ocean is reconstructed. It is discussed in the context of global paleogeography. Paleotemperature field, climatic zonation, paleoecology of foraminifera, position of the main water masses, water fronts, currents, distribution of sea ice boundaries, upwelling activity, benthic circulation, processes of sedimentation are econstructed and analyzed.
Resumo:
During the Paleocene-Eocene Thermal Maximum (PETM) about 56 million years ago, thousands of petagrams of carbon were released into the atmosphere and ocean in just a few thousand years, followed by a gradual sequestration over approximately 200,000 years. If silicate weathering is one of the key negative feedbacks that removed this carbon, a period of seawater calcium carbonate saturation greater than pre-event levels is expected during the event's recovery phase. In marine sediments, this should be recorded as a temporary deepening of the depth below which no calcite is preserved - the calcite compensation depth (CCD). Previous and new sedimentary records from sites that were above the pre-PETM calcite compensation depth show enhanced carbonate accumulation following the PETM. A new record from an abyssal site in the North Atlantic that lay below the pre-PETM calcite compensation depth shows a period of carbonate preservation beginning about 70,000 years after the onset of the PETM, providing the first direct evidence for an over-deepening of the calcite compensation depth. This record confirms an overshoot in ocean carbonate saturation during the PETM recovery. Simulations with two earth system models support scenarios for the PETM that involve both a large initial carbon release followed by prolonged low-level emissions, consistent with the timing of CCD deepening in our record. Our findings indicate that sequestration of these carbon emissions was most likely the result of both globally enhanced calcite burial above the calcite compensation depth and, at least in the North Atlantic, by a temporary over-deepening of the calcite compensation depth.
Resumo:
With the examination of multinet catches (63 µm mesh size), the present study analyzes the distribution of planktonic foraminifera in Polar regions: the Labrador Sea, Greenland Sea at 75°N and Fram Strait at 80°N. The community of the planktonic foraminifera, which in the study area mainly consists of six species: left and right-coiling N. pachyderma, T. quinqueloba, G. bulloides, G. glutinata and G. uvula, is primarily controlled by the temperature in the different water masses. Besides hydrographic parameters, the changes in the horizontal and vertical distribution of N. pachyderma (s.) and T. quinqueloba as well as their shell size distribution in the study area are primarily influenced by the synchrone reproduction, which is coupled to the lunar cycle. Detailed examinations of the isotope signal in dependency on the shell size and weight for N. pachyderma (s.) and T. quinqueloba from plankton tows, indicated the weight or degree of calcification to not be the primary factor controlling the isotope signal of encrusted specimens.The d18O vital effect is primarily caused by the thermal stratification of the water column, whereas the d13C vital effect mainly results from the ontogenetic development.
Resumo:
The bulk rock geochemistry and inoceramid isotopic composition from Cenomanian to Santonian, finely laminated, organic-rich black shales, recovered during Ocean Drilling Program Leg 207 on Demerara Rise (western tropical North Atlantic), suggest persistent anoxic (free H2S) conditions within the sediments and short-term variations within a narrow range of anoxic to episodically dysoxic bottom waters over a ~15 Ma time interval. In addition to being organic-rich, the 50-90 m thick sections examined exhibit substantial bulk rock enrichments of Si, P, Ba, Cu, Mo, Ni, and Zn relative to World Average Shale. These observations point to high organic burial fluxes, likely driven by high primary production rates, which led to the establishment of intensely sulfidic pore waters and possibly bottom waters, as well as to the enrichments of Cr, Mo, U, and V in the sediments. At the same time, the irregular presence of benthic inoceramids and foraminifera in this facies demonstrates that the benthic environment could not have been continuously anoxic. The d13C and d15N values of the inoceramid shell organics provide no evidence of chemosymbiosis and are consistent with pelagic rain as being a significant food source. Demerara Rise inoceramids also exhibit well-defined, regularly spaced growth lines that are tracked by d13C and d18O variations in shell carbonate that cannot be simply explained by diagenesis. Instead, productivity variations in surface waters may have paced the growth of the shells during brief oxygenation events suitable for benthic inoceramid settlement. These inferences imply tight benthopelagic coupling and more dynamic benthic conditions than generally portrayed during black shale deposition. By invoking different temporal scales for geochemical and paleontological data, this study resolves recent contradictory conclusions (e.g., sulfidic sedimentary conditions versus dysoxic to suboxic benthic waters) drawn from studies of either sediment geochemistry or fossil distributions alone on Demerara Rise. This variability may be relevant for discussions of black shales in general.
(Table 3) Relative depth and age, CaCO3, d18O, d13C and Sr/Ca analysis from ODP Leg 130, 154 and 138
Resumo:
Interpretations of calcite strontium/calcium records in terms of ocean history and calcite diagenesis require distinguishing the effects on deep-sea calcite sediments of changes in ocean chemistry, of different mixes of calcite-depositing organisms as sediment contributors through time and space, and of the loss of Sr during diagenetic calcite recrystallization. In this paper Sr/Ca and d18O values of bulk calcium carbonate sediments are used to estimate the relative extent of calcite recrystallization in samples from four time points (core tops, 5.6, 9.4, and 37.1 Ma) at eight Ocean Drilling Program sites in the equatorial Atlantic (Ceara Rise) and equatorial Pacific (Ontong Java Plateau and two eastern equatorial Pacific sites). The possibility that site-to-site differences in calcite Sr/Ca at a given time point originated from temporal variations in ocean chemistry was eliminated by careful age control of samples for each time point, with sample ages differing by less than the oceanic residence times of Sr and Ca. The Sr/Ca and d18O values of 5.6- and 9.4-Ma samples from the less-carbonate-rich eastern equatorial Pacific sites and Ceara Rise Site 929 appear to be less diagenetically altered than the Sr/Ca and d18O values of contemporaneous samples from the more carbonate-rich sites. It is evident from these data that both Sr/Ca and d18O in bulk calcite have been diagenetically altered in some samples 5.6 Ma and older. These data indicate that noncarbonate sedimentary components, like clay and biogenic silica, have partially suppressed recrystallization at the lower carbonate sites. Sr/Ca data from the less altered, carbonate-poor sites indicate higher oceanic Sr/Ca relative to today at 5.6 and 9.4 Ma.