319 resultados para coral reef ecosystem of Nansha Islands


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is predicted that surface ocean pH will reach 7.9, possibly 7.8 by the end of this century due to increased carbon dioxide (CO2) in the atmosphere and in the surface ocean. While aragonite-rich sediments don't begin to dissolve until a threshold pH of ~ 7.8 is reached, dissolution from high-Mg calcites is evident with any drop in pH. Indeed, it is high-Mg calcite that dominates the reaction of carbonate sediments with increased CO2, which undergoes a rapid neomorphism process to a more stable, low-Mg calcite. This has major implications for the future of the high-Mg calcite producing organisms within coral reef ecosystems. In order to understand any potential buffering system offered by the dissolution of carbonate sediments under a lower oceanic pH, this process of high-Mg calcite dissolution in the reef environment must be further elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-sea sediment core FR1/97 GC-12 is located 990 mbsl in the northern Tasman Sea, southwest Pacific, where Antarctic Intermediate Water (AAIW) presently impinges the continental slope of the southern Great Barrier Reef. Analysis of carbon (d13C) and oxygen (d18O) isotope ratios on a suite of planktonic and benthic foraminifera reveals rapid changes in surface and intermediate water circulation over the last 30 kyr. During the Last Glacial Maximum, there was a large d13C offset (1.1 per mil) between the surface-dwelling planktonic foraminifera and benthic species living within the AAIW. In contrast, during the last deglaciation (Termination 1), the d13C(planktonic-benthic) offset reduced to 0.4 per mil prior to an intermediate offset (0.7 per mil) during the Holocene. We suggest that variations in the dominance and direction of AAIW circulation in the Tasman Sea, and increased oceanic ventilation, can account for the rapid change in the water column d13C(planktonic-benthic) offset during the glacial-interglacial transition. Our results support the hypothesis that intermediate water plays an important role in propagating climatic changes from the polar regions to the tropics. In this case, climatic variations in the Southern Hemisphere may have led to the rapid ventilation of deep water and AAIW during Termination 1, which contributed to the postglacial rise in atmospheric CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To reveal changes in the oceanic environment on the continental slope adjacent to the Great Barrier Reef, east of Cairns (NE Australia), planktonic and benthic foraminiferal abundances were counted and planktonic percentages (P/B ratios) were determined in sediments from two sites. Counts of planktonic and benthic specimens per gram of sediment over the last glacial/interglacial cycle at the shallowest Site 821, located in a water depth of 212 m just below the core of Subtropical Lower Water, show high abundances in the last glacial compared with the Holocene interglacial. We interpret the apparent increase in abundances during the last glacial as mainly a consequence of fluctuations in the intensity of flow of Subtropical Lower Water along the outer shelf edge and upper slope. During the lowstand in sea level, the increased flow winnowed the sediments, concentrating the foraminiferal skeletons. The P/B ratios are low throughout, with the highest values occurring during the Holocene interglacial and glacial stage 2. This suggests that some upwelling might have occurred during glacial stage 2. The relatively deeper water Site 819 is located in 565.2 m of water in a zone of mixing between Subtropical Lower Water and Antarctic Intermediate Water. The studied record at this site represents middle to upper Quaternary sediments, but it was interrupted by a hiatus just above stage 15 (Alexander et al., this volume); stages 7 through 13 are missing. Below the hiatus (isotopic stages 15 through 21), the foraminiferal abundances are low, while above the hiatus, the highest abundances occur in isotopic stage 6. In addition, a major change in the P/B ratio occurs across the unconformity. Below the hiatus, the ratios are low and resemble the values of the top of Site 821; but above it, ratios rapidly fluctuate, with a tendency for high values during glacial periods. We interpret the changes across the hiatus as having been caused by a shift in the position of the mixing zone between subsurface Subtropical Lower Water and Antarctic Intermediate Water. The mixing zone of these watermasses was farther down the slope in isotopic stages 15 through 21. This is indicated by the low P/B ratios, similar to the values found in the top of Site 821, which presently is bathed in subtropical waters. Above the hiatus, the influence of Antarctic Intermediate Water increased, as inferred from the high P/B ratios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this monograph on the basis of materials obtained by the author and his colleagues in Arctic expeditions of 1991-2005 and of published data results of studies effect of aerosols on environmental conditions and marine sedimentation in the Arctic are summarizes. Processes of aeolian transport and transformation of sedimentary material from sources to places of its accumulation in bottom sediments are described. Results of this study can be used to assess current state of ecosystem of Arctic seas and as a background for evaluation of possible human impact on nature during exploration of mineral resources of the Arctic shelf. For oceanographers, geochemists, geoecologists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The raw material for these investigations are samples from marine (sub)surface sediments around the northern part of the Antarctic Peninsula. They had been sampled in the years 1981 to 1986 during several expeditions of the research vessels Meteor, Polarstern and Walther Herwig. 83 box core, gravity core and dredge samples from the area of the Bransfield Strait, the Powell Basin and the northern Weddell Sea have been examined for their grain-size distribution, their mineralogical and petrographical composition. Silt prevails and its clay proportions exceed 25% wt. in water depths greater than 2000 m. The granulometrical results reveal some typical sedimentation processes within the area of investigation. While turbiditic processes together with sediment input from melting icebergs control the sedimentation in the Weddell Sea, the South Orkney Island Plateau and the Powell Basin, the fine grained material from Bransfield Strait mainly relies on marine currents in the shelf area. In addition, the direct sediment input of coarse shelf sediments from the Bransfield Strait into the Powell Basin through submarine canyons could be proven. Variations in the grain-size composition with sediment depth are smalI. The mineral composition of the clay and fine silt fractions is quite uniform in all samples. There are (in decreasing order): illite, montmorillonite, chlorite, smectite, mixed-Iayers, as well as detrital quartz and feldspars. A petrographically based sediment stratigraphy can be established in using the considerable changes in the chlorite- and Ca-plagioclase portions in samples from Core 224. For this sedimentation area a mean sedimentation rate of 7 cm/1000 a is assumed. Remarkable changes in the portions of amorphous silica components - diatom skeletons and volcanic glass shards - appear all over the area of investigation. They contribute between 4-83 % to the clay and fine silt fraction. Several provinces according to the heavy mineral assemblages in the fine sand fraction can be distinguished: (i) a province remarkably influenced by minerals of volcanic origin south and north of the South Shetland Islands; (ii) a small strip with sediment dominated by plutonic material along the western coast of the Antarctic Peninsula and (iii) a sediment controlled by metamorphic minerals and rock fragments in the area of the Weddell Sea and Elephant Island. While taking the whole grain-size spectrum into account a more comprehensive interpretation can be given: the accessoric but distinct appearance of tourmaline, rutile and zircon in the heavy mineral assembly along the northwestern coast of the Antarctic Peninsula is in agreement with the occurrence of acid volcanic rock pieces in the coarse fraction of the ice load detritus in this region. In the vicinity of the South Shetland Islands chlorite appears in remarkable portions in the clay fraction in combination with leucoxene, sphene and olivine, and pumice as well as pyroclastic rocks in the medium and coarse grain fractions, respectively. Amphiboles and amphibole-schists are dominant on the South Orkney Island Plateau. In the sediments of the northwestern Weddell Sea the heavy mineral phases of red spinel, garnet, kyanite and sillimanite in connection with medium to highgrade metamorphic rocks especially granulitic gneisses, are more abundant. A good conformity between the ice rafted rock sampIes and the rocks in the island outcrops could be proven, especially in the vicinity of offshore islands nearby. On the continent enrichments of rock societies and groups appear in spacious outlines: acid effusive rocks in the west of the ice divide on the Antarctic Peninsula, clastic sedimentites at the tip of the Antarctic Peninsula and granoblastic gneisses in central and eastern Antarctica. Coarse grain detritus with more than 1 cm of diameter must have been rafted by icebergs. These rock fragments are classified as rock types, groups and societies. The spacial distribution of their statistically determined weight relations evidently shows the paths of the iceberg drift and in nexus with already known iceberg routes also point to the possible areas of provenance, provided that the density of sample locations and the number of rock pieces are sufficient.

Relevância:

100.00% 100.00%

Publicador: