435 resultados para URANIUM
Resumo:
Samples of sediments and rocks collected at DSDP Sites 530 and 532 were analyzed for 44 major, minor, and trace elements for the following purposes: (1) to document the downhole variability in geochemistry within and between lithologic units; (2) to document trace-element enrichment, if any, in Cretaceous organic-carbon-rich black shales at Site 530; (3) to document trace-element enrichment, if any, in Neogene organic-carbon-rich sediments at Site 532; (4) to document trace-element enrichment, if any, in red claystone above basalt basement at Site 530 that might be attributed to hydrothermal activity or weathering of basalt. Results of the geochemical analyses showed that there are no significant enrichments of elements in the organic-carbon-rich sediments at Site 532, but a number of elements, notably Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn, are enriched in the Cretaceous black shales. These elements have different concentration gradients within the black-shale section, however, which suggests that there was differential mobility of trace elements during diagenesis of interbedded more-oxidized and less-oxidized sediments. There is little or no enrichment of elements from hydrothermal activity in the red claystone immediately overlying basalt basement at Site 530, but slight enrichments of several elements in the lowest meter of sediment may be related to subsea weathering of basalt
Resumo:
Thirty-five samples from the drill core of the three Leg 163 sites (Sites 988, 989, and 990) off the southeast coast of Greenland were analyzed for 27 major, minor, and trace elements by X-ray fluorescence (XRF) and for 25 trace elements, including 14 rare-earth elements (REEs), by an inductively coupled plasma source mass spectrometer (ICP/MS). Sr- and Nd-isotope data are reported for seven samples and oxygen-isotope data are reported for 19 plagioclase separates. In addition, a reconnaissance survey of the composition of the main mineral phases, plagioclase, pyroxene, and oxides was determined on an electron microprobe to provide the basic information required for petrogenetic modeling. Olivine pseudomorphs are present in many of the samples, but in no case was an olivine grain found that was fresh enough to give a reliable analysis. The chemical and isotopic data recorded here were determined to provide a comparison with the larger data sets acquired by the Edinburgh, Copenhagen, and Leicester laboratories from both Legs 152 and 163 drill cores. This will permit a detailed comparison of the North Atlantic flood basalt province as a whole with the better known Columbia River, Deccan, and Karoo continental flood basalt provinces, for which substantial chemical data sets are already available at Washington State University.
Resumo:
Mineralogical identification, glass chemistry, and instrumental neutron activation analyses of Quaternary volcanic ash layers from Leg 67 Holes 496, 497, and 499 are used to correlate the drill holes and on-land sources. We have identified two units at Hole 496 that correspond to the 23,000-yr.-old Pinos Altos ash (Samples 496-3-4, 55-57 cm and 496-3-5, 74-76 cm); the 84,000-yr.-old Los Chocoyos ash corresponds with Sample 496-5-4, 134-146 cm, but this latter correlation is less certain.
Resumo:
We present a new mid-latitude speleothem record of millennial-scale climatic variability during OIS3 from the Villars Cave that, combined with former published contemporaneous samples from the same cave, gives a coherent image of the climate variability in SW-France between ~55 ka and ~30 ka. The 0.82 m long stalagmite Vil-stm27 was dated with 26 TIMS U-Th analyses and its growth curve displays variations that are linked with the stable isotopes, both controlled by the climatic conditions. It consists in a higher resolved replicate of the previously published Vil-stm9 and Vil-stm14 stalagmites where Dansgaard-Oeschger (DO) events have been observed. The good consistency between these three stalagmites and the comparison with other palaoeclimatic reconstructions, especially high resolution pollen records (ODP 976 from the Alboran Sea, Monticchio Lake record from southern Italy) and the nearby MD04-2845 Atlantic Ocean record, permits to draw a specific climatic pattern in SW-France during the OIS3 and to see regional differences between these sites. Main features of this period are: 1) warm events corresponding to Greenland Interstadials (GIS) that are characterized by low speleothem d13C, high temperate pollen percentages, warm temperatures and high humidity; among these events, GIS#12 is the most pronounced one at Villars characterized by an abrupt onset at ~46.6 ka and a duration of about 2.5 ka. The other well individualized warm event coincides with GIS#8 which is however much less pronounced and occurred during a cooler period as shown by a lower growth rate and a higher d13C; 2) cold events corresponding to Greenland Stadials (GS) that are clearly characterized by high speleothem d13C, low temperate pollen abundance, low temperature and enhanced dryness, particularly well expressed during GS coinciding with Heinrich events H5 and H4. The main feature of the Villars record is a general cooling trend between the DO#12 event ~45.5 ka and the synchronous stop of the three stalagmites at ~30 ka ±1, with a first well marked climatic threshold at ~41 ka after which the growth rate and the diameter of all stalagmites slows down significantly. This climatic evolution differs from that shown at southern Mediterranean sites where this trend is not observed. The ~30 ka age marks the second climatic threshold after which low temperatures and low rainfalls prevent speleothem growth in the Villars area until the Lateglacial warming that occurred at ~16.5 ± 0.5 ka. This 15 ka long hiatus, as the older Villars growth hiatus that occurred between 67.4 and 61 ka, are linked to low sea levels, reduced ocean circulation and a southward shift of the Polar Front that likely provoked local permafrost formation. These cold periods coincide with both low summer 65°N insolation, low atmospheric CO2 concentration and large ice sheets development (especially the Fennoscandian).
Resumo:
The calcium isotopic compositions (d44Ca) of 30 high-purity nannofossil ooze and chalk and 7 pore fluid samples from ODP Site 807A (Ontong Java Plateau) are used in conjunction with numerical models to determine the equilibrium calcium isotope fractionation factor (a_s-f) between calcite and dissolved Ca2+ and the rates of post-depositional recrystallization in deep sea carbonate ooze. The value of a_s-f at equilibrium in the marine sedimentary section is 1.0000+/-0.0001, which is significantly different from the value (0.9987+/-0.0002) found in laboratory experiments of calcite precipitation and in the formation of biogenic calcite in the surface ocean. We hypothesize that this fractionation factor is relevant to calcite precipitation in any system at equilibrium and that this equilibrium fractionation factor has implications for the mechanisms responsible for Ca isotope fractionation during calcite precipitation. We describe a steady state model that offers a unified framework for explaining Ca isotope fractionation across the observed precipitation rate range of ~14 orders of magnitude. The model attributes Ca isotope fractionation to the relative balance between the attachment and detachment fluxes at the calcite crystal surface. This model represents our hypothesis for the mechanism responsible for isotope fractionation during calcite precipitation. The Ca isotope data provide evidence that the bulk rate of calcite recrystallization in freshly-deposited carbonate ooze is 30-40%/Myr, and decreases with age to about 2%/Myr in 2-3 million year old sediment. The recrystallization rates determined from Ca isotopes for Pleistocene sediments are higher than those previously inferred from pore fluid Sr concentration and are consistent with rates derived for Late Pleistocene siliciclastic sediments using uranium isotopes. Combining our results for the equilibrium fractionation factor and recrystallization rates, we evaluate the effect of diagenesis on the Ca isotopic composition of marine carbonates at Site 807A. Since calcite precipitation rates in the sedimentary column are many orders of magnitude slower than laboratory experiments and the pore fluids are only slightly oversaturated with respect to calcite, the isotopic composition of diagenetic calcite is likely to reflect equilibrium precipitation. Accordingly, diagenesis produces a maximum shift in d44Ca of +0.15? for Site 807A sediments but will have a larger impact where sedimentation rates are low, seawater circulates through the sediment pile, or there are prolonged depositional hiatuses.
Resumo:
The trace element compositions of Hadean zircons have been used in two ways to argue for the existence of Hadean continental crust. One argument is based on low crystallization temperatures of Hadean zircons that have been determined using a novel geothermometer based on the Ti content of zircons in equilibrium with rutile. The second argument is based on using the trace element abundances in zircons to calculate their parental melt compositions, especially the rare earth elements. Here we demonstrate that zircons that grow from a melt formed by basalt differentiation at modern mid-ocean ridges cannot be unambiguously distinguished from Hadean zircons on either of these grounds. Thus, we conclude that the trace element compositions of Hadean zircons are permissive of models that do not include the generation of continental crust in the Hadean.
Resumo:
Samples of basalt collected on Leg 65 near 22°N on the East Pacific Rise all display the depleted light rare-earth pattern of "normal" oceanic crust. Consequently the La/Ta ratio is close to 18, as opposed to the value of 9 associated with the flat or enriched patterns found along parts of the Mid-Atlantic Ridge and the Emperor Seamount chain. The Leg 65 samples are chemically similar to those from the CYAMEX area at 21 °N and to the Leg 54 samples from 9°N, suggesting homogeneity of the upper mantle under the northern part of the East Pacific Rise over a minimum distance of about 1500 km. The geochemistry of the rocks and their field relationships with respect to depth and distance from the axis of the Rise show no pattern of distribution linked to the degree of fractional crystallization and thus cast doubt on any possible model involving large, long-lived magma chambers at the axis of the Rise.