298 resultados para Trammel net, small-scale fishery, discards, Mediterranean sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sesame dataset contains mesozooplankton data collected during April 2008 in the Marmara Sea (between 40°15' - 34°00N latitude and 19°00 - 23°10'E longitude). Sampling was always performed in day hours (07:00-18:00 local time). Samples were taken at 6 stations in the Marmara Sea. Mesozooplankton samples were collected by using a WP-2 closing net with 200 µm mesh size. Sample was immediately fixed and preserved in a formaldehyde-seawater solution (4% final concentration) to be successively analyzed in the laboratory for species composition, abundance and total biomass. The algal organisms materials were then seperated from the mesozooplankton subsample at the dissecting microscope in the laboratory because of the contamination of the net samples with large-sized algae and mucilaginous organic matters. Afterwards, each samples were filtered on GF/C (pre combusted and weighed) for biomass measurements for dry weight. The dataset includes samples analyzed for mesozooplankton species composition, abundance and total mesozooplankton biomass. Sampling volume was estimated by multiplying the mouth area with the wire length. Sampling biomass was measured by weighing filters and then determined according to sampling volume. 1/2 sample or an aliquot was analyzed under the binocular microscope. Copepod species were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Taxonomic identification was done at the METU-Institute of Marine Sciences by Tuba Terbiyik using the relevant taxonomic literatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The "SESAME_IT2_ZooAbundance_0-50-100m_SZN" dataset contains data of mesozooplankton species composition and abundance (ind. m-3) from samples collected in the Ionian Sea in the late winter (2-8 March) of 2008 during the SESAME-WP2 cruise IT2. Samples were collected by vertical tows with a closing WP2 net (56 cm diameter, 200 ?m mesh size) in the following depth layers: 100-200 m, 50-100 m, 0-50 m. Sampling was always performed in light hours. A flowmeter was applied to the mouth of the net, however, due to its malfunctioning, the volume of filtered seawater was calculated by multiplying the the area by the height of the sampled layer from winch readings. After collection, each sample was split in two halves (1/2) after careful mixing with graduated beakers. Half sample was immediately fixed and preserved in a formaldehyde-seawater solution (4% final concentration) for species composition and abundance. The other half sample was kept fresh for biomass measurements (data already submitted to SESAME database in different files).Here, only the zooplankton abundance of samples in the upper layers 0-50 m and 50-100 m are presented. The abundance data of the samples in the layer 50-100 m will be submitted later in a separate file. The volume of filtered seawater was estimated by multiplying the the area by the height of the sampled layer from winch readings. Identification and counts of specimens were performed on aliquots (1/20-1/5) of the fixed sample or on the total sample (half of the original sample) by using a graduate large-bore pipette. Copepods were identified to the species level and separated into females, males and juveniles (copepodites). All other taxa were identified at the species level when possible, or at higher taxonomic levels. Taxonomic identification was done according to the most relevant and updated taxonomic literature. Total mesozooplankton abundance was computed as sum of all specific abundances determined as explained above.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ALMOFRONT2 dataset contains mesozooplankton data collected in 1997 - 1998 in the Alboran Sea (South Western Mediterranean Sea) between : 37° 00' N, 2° 54' W and 35° 18' N, 0°00' E.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because zooplankton feces represent a potentially important transport pathway of surface-derived organic carbon in the ocean, we must understand the patterns of fecal pellet abundance and carbon mobilization over a variety of spatial and temporal scales. To assess depth-specific water column variations of fecal pellets on a seasonal scale, vertical fluxes of zooplankton fecal pellets were quantified and their contribution to mass and particulate carbon were computed during 1990 at 200, 500, 1000, and 2000 m depths in the open northwestern Mediterranean Sea as part of the French-JGOFS DYFAMED Program. Depth-averaged daily fecal pellet flux was temporally variable, ranging from 3.04 * 10**4 pellets m**2/d in May to a low of 6.98 * 10**2 pellets m**2/d in September. The peak flux accounted for 50% of the integrated annual flux of fecal pellets and 62% of pellet carbon during only two months in mid-spring (April and May). Highest numerical fluxes were encountered at 1000 m, suggesting fecal pellet generation well below the euphotic zone. However, there was a trend toward lower pellet carbon with increasing depth, suggesting bacterial degradation or in situ repackaging as pellets sink through the water column. At 500 m, both the lowest pellet numerical abundance and carbon flux were evident during the spring peak. Combined with data indicating that numerical and carbon fluxes are dominated at 500 m by a distinct type of pellet found uniquely at this depth, these trends suggest the presence of an undescribed mid-water macro-zooplankton or micro-nekton community. Fecal pellet carbon flux was highest at 200 m and varied with depth independently of overall particulate carbon, which was greatest at 500 m. Morphologically distinct types of pellets dominated the numerical and carbon fluxes. Small elliptical and spherical pellets accounted for 88% of the numerical flux, while larger cylindrical pellets, although relatively rare (<10%), accounted for almost 40% of the overall pellet carbon flux. Cylindrical pellets dominated the pellet carbon flux at all depths except 500 m, where a large subtype of elliptical pellet, found only at that depth, was responsible for the majority of pellet carbon flux. Overall during 1990, fecal pellets were responsible for a depth-integrated annual average flux of 1.03 mgC/m**2/d, representing 18% of the total carbon flux. The proportion of vertical carbon flux attributed to fecal pellets varied from 3 to 35%, with higher values occurring during periods when the water column was vertically mixed. Especially during these times, fecal pellets are a critical conveyor of carbon to the deep sea in this region.