292 resultados para Shield volcano


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrocarbon seeps are ubiquitous at gas-prone Cenozoic deltas such as the Nile Deep Sea Fan (NDSF) where seepage into the bottom water has been observed at several mud volcanoes (MVs) including North Alex MV (NAMV). Here we investigated the sources of hydrocarbon gases and sedimentary organic matter together with biomarkers of microbial activity at four locations of NAMV to constrain how venting at the seafloor relates to the generation of hydrocarbon gases in deeper sediments. At the centre, high upward flux of hot (70 °C) hydrocarbon-rich fluids is indicated by an absence of biomarkers of Anaerobic Oxidation of Methane (AOM) and nearly constant methane (CH4) concentration depth-profile. The presence of lipids of incompatible thermal maturities points to mixing between early-mature petroleum and immature organic matter, indicating that shallow mud has been mobilized by the influx of deep-sourced hydrocarbon-rich fluids. Methane is enriched in the heavier isotopes, with values of d13C ~-46.6 per mil VPDB and dD ~-228 per mil VSMOW, and is associated with high amounts of heavier homologues (C2+) suggesting a co-genetic origin with the petroleum. On the contrary at the periphery, a lower but sustained CH4 flux is indicated by deeper sulphate-methane transition zones and the presence of 13C-depleted biomarkers of AOM, consistent with predominantly immature organic matter. Values of d13C-CH4 ~-60 per mil VPDB and decreased concentrations of 13C-enriched C2+ are typical of mixed microbial CH4 and biodegraded thermogenic gas from Plio-Pleistocene reservoirs of the region. The maturity of gas condensate migrated from pre-Miocene sources into Miocene reservoirs of the Western NDSF is higher than that of the gas vented at the centre of NAMV, supporting the hypothesis that it is rather released from the degradation of oil in Neogene reservoirs. Combined with the finding of hot pore water and petroleum at the centre, our results suggest that clay mineral dehydration of Neogene sediments, which takes place posterior to reservoir filling, may contribute to intense gas generation at high sedimentation rate deltas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sarcya 1 dive explored a previously unknown 12 My old submerged volcano, labelled Cornacya. A well developed fracturation is characterised by the following directions: N 170 to N-S, N 20 to N 40, N 90 to N 120, N 50 to N 70, which corresponds to the fracturation pattern of the Sardinian margin. The sampled lavas exhibit features of shoshonitic suites of intermediate composition and include amphibole-and mica-bearing lamprophyric xenoliths which are geochemically similar to Ti-poor lamproites. Mica compositions reflect chemical exchanges between the lamprophyre and its shoshonitic host rock suggesting their simultaneous emplacement. Nd compositions of the Cornacya K-rich suite indicate that continental crust was largely involved in the genesis of these rocks. The spatial association of the lamprophyre with the shoshonitic rocks is geochemically similar to K-rich and TiO2-poor igneous suites, emplaced in post-collisional settings. Among shoshonitic rocks, sample SAR 1-01 has been dated at 12.6±0.3 My using the 40Ar/39Ar method with a laser microprobe on single grains. The age of the Cornacya shoshonitic suite is similar to that of the Sisco lamprophyre from Corsica, which similarly is located on the western margin of the Tyrrhenian Sea. Thus, the Cornacya shoshonitic rocks and their lamprophyric xenolith and the Sisco lamprophyre could represent post-collisional suites emplaced during the lithospheric extension of the Corsica-Sardinia block, just after its rotation and before the Tyrrhenian sea opening. Drilling on the Sardinia margin (ODP Leg 107) shows that the upper levels of the present day margin (Hole 654) suffered tectonic subsidence before the lower part (Hole 652). The structure of this lower part is interpreted as the result of an eastward migration of the extension during Late Miocene and Early Pliocene times. Data of Cornacya volcano are in good agreement with this model and provide good chronological constraints for the beginning of the phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tore Seamount is a circular, volcano-like feature 100 km in diameter with its summit at 2200 m water depth and a small, 5000 m deep basin in its interior. It is situated approximately 300 km west of Lisbon and is surrounded by deep abyssal plains. This site with a standard pelagic stratigraphy is the southernmost point where the so-called Heinrich events have so far been recorded. A succession of alternating interglacial/glacial periods reveals a stratigraphic record back to the beginning of isotopic stage 7 (225 kyr). Climatic changes are identifiable by coherent variations in colour, carbonate content and distribution of ice-rafted detritus in the carbonate-free fraction. Inputs of ice-rafted quartz are well defined. Characteristics in common with other sites showing Heinrich layers include a high terrigenous to biogenic ratio, a dramatic decrease in the accumulation rate of foraminifera shells, an increase in dolomite abundance and the occurrence of polar foraminiferal species indicating southwards penetration of cold waters which lead us to consider a wider southeastern extent of the North Atlantic ice-rafted detritus belt than hitherto. If the presently accepted position of the Polar Front is maintained, icebergs must have been swept southwards from the southern boundary of the pack ice in a current merging into the ancestral Canary Current, bringing ice-rafted material to the Tore Seamount. The coincidence of reddish-feldspar, probably derived from the northern Appalachian Triassic red facies, with the transparent quartz suggests at least a partial Labrador source for all the Heinrich layers here, including HL 3. In comparison to other sites in the entire North Atlantic, two exceptions stand out: the absence of HL 5 and the low detritus to biogenics ratio for HL 3. The simultaneous occurrence of these two types of ice-rafted minerals is a new piece in the puzzle of the origin of Heinrich layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In weakly indurated, nannofossil-rich, deep-sea carbonates compressional wave velocity is up to twice as fast parallel to bedding than normal to it. It has been suggested that this anisotropy is due to alignment of calcite c-axes perpendicular to the shields of coccoliths and shield deposition parallel to bedding. This hypothesis was tested by measuring the preferred orientation (fabric) of calcite c-axes in acoustic anisotropic, calcareous DSDP sediment samples by X-ray goniometry, and it was found that the maximum c-axis concentrations are by far too low to explain the anisotropies. The X-ray method is subject to a number of uncertainties due to preparatory and technical shortcomings in weakly indurated rocks. The most serious weaknesses are: sample preparation, volume of measured sample (fraction of a mm3), beam defocusing and background intensity corrections, combination of incomplete pole figures, and necessity of recalculation of the c-axis orientations from other crystallographic directions. Goniometry using thermal neutrons overcomes most of these difficulties, but it is time consuming. We test the interferences made about velocity anisotropy by X-ray studies about the concentration of c-axes in deep-sea carbonates by employing neutron texture goniometry to eight DSDP samples comprising mostly nannofossil material. Fabric and sonic velocity were determined directly on the core specimens, thus from the same rock volume and requiring no preparation. The c-axis orientation is obtained directly from the [0006] calcite diffraction peak without corrections. The fabrics are clearly defined, but weak (1.1 to 1.86 times uniform) with the maximum about normal to bedding. They have crudely orthorhombic symmetry, but are not axisymmetric around the bedding normal. The observed c-axis intensities, although higher than determined by the X-ray method on other samples, are by far too low to explain the observed acoustic anisotropies.