293 resultados para Rare earth exchanged Na–Y zeolites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Leg 136 drilling was conducted at two sites in pelagic sediments of the north central Pacific Ocean. In this report, pore-water analyses for major seawater constituents, alkalinity, ammonia, nitrate, phosphate, silica, Ba, Fe, Li, Mn, and Sr are presented. Although concentration gradients are generally weak, resulting from slow sedimentation and concomitant diffusive communication with overlying water, there is evidence of sediment/pore-water interactions, associated sediment diagenesis, and formation of authigenic minerals. Bulk major and trace element compositions of the sediments are consistent with reactions inferred to occur within the sediments and with the lithology and mineralogy. Elemental compositions of the sediments are not strongly affected by diagenesis and are primarily related to the dominant mineralogy. Sediments are typical of deep ocean pelagic settings with a significant contribution from the alteration of volcanic ash and the formation of zeolites. Sedimentary rare earth element patterns also provide evidence of active scavenging processes by Mn and Fe oxide phases in the deeper sediments at Site 842.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of detailed mineralogical, chemical, and oxygen isotope analyses of the clay minerals and zeolites from two Cretaceous-Tertiary (K/T) boundary regions, Stevns Klint, Denmark, and Deep Sea Drilling Project (DSDP) Hole 465A in the north central Pacific Ocean, are presented. In the central part of the Stevns Klint K/T boundary layer, the only clay mineral detected by x-ray diffraction is a pure smectite with > 95 percent expandable layers. No detrital clay minerals or quartz were observed in the clay size fraction in these beds, whereas the clay minerals above and below the boundary layer are illite and mixed-layer smectite-illite of detrital origin as well as quartz. The mineralogical purity of the clay fraction, the presence of smectite only at the boundary, and the d18O value of the smectite (27.2 ± 0.2 per mil) suggest that it formed in situ by alteration of glass. Formation from impact rather than from volcanic glass is supported by its major element chemistry. The high content of iridium and other siderophile elements is not due to the cessation of calcium carbonate deposition and resulting slow sedimentation rates. At DSDP Hole 465A, the principal clay mineral in the boundary zone (80 to 143 centimeters) is a mixed-layer smectite-illite with >=90 percent expandable layers, accompanied by some detrital quartz and small amounts of a euhedral authigenic zeolite (clinoptilolite). The mixed-layer smectite-illite from the interval 118 to 120 centimeters in the zone of high iridium abundance has a very low rare earth element content; the negative cerium anomaly indicates formation in the marine environment. This conclusion is corroborated by the d18O value of this clay mineral (27.1 ± 0.2 per mil). Thus, this mixed-layer smectite-illite formed possibly from the same glass as the K/T boundary smectite at Stevns Klint, Denmark.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volcaniclastic sediments of North Aoba Basin (Vanuatu) recovered during Ocean Drilling Program (ODP) Leg 134 show a mineralogical and chemical overprint of low grade hydrothermal alteration superimposed on the primary magmatic source compositions. The purpose of this study was to identify authigenic mineral phases incorporated in the volcaniclastic sediments, to distinguish authigenic chemical and mineralogical signals from the original volcaniclastic mineralogical and chemical compositions, and to determine the mechanism of authigenic minerals formation. Mineralogical, micro-chemical and bulk chemical analyses were utilized to identify and characterize authigenic phases and determine the original unaltered ash compositions. 117 volcaniclastic sediment samples from North Aoba Basin Sites 832 and 833 were analyzed. Primary volcaniclastic materials accumulated in North Aoba Basin can be divided into three types. The older basin-filling sequences show three different magmatic trends: high K, calc-alkaline, and low K series. The most recent accumulations are rhyodacitic composition and can be attributed to Santa Maria or Aoba volcanic emissions. Original depositional porosity of volcaniclastic sediments is an important factor in influencing distribution of authigenic phases. Finer-grained units are less altered and retain a bulk mineralogical and chemical composition close to the original pyroclastic rock composition. Coarser grained units (microbreccia and sandstones) are the major hosts of authigenic minerals. At both sites, authigenic minerals (including zeolites, clay minerals, Mg-carbonates, and quartz) exhibit complex zonation with depth that crosses original ash depositional boundaries and stratigraphic limits. The zeolite minerals phillipsite and analcime are ubiquitous throughout the altered intervals. At Site 832, the first zeolite minerals (phillipsite) occur in Pleistocene deposits as shallow as 146 meters below seafloor (mbsf). At Site 833 the first zeolite minerals (analcime) occur in Pleistocene deposits as shallow as 224 mbsf. The assemblage phillipsite + analcime + chabazite appears at 635 mbsf (Site 832) and at 376 mbsf (Site 833). Phillipsite + analcime + chabazite + thomsonite + heulandite are observed between 443 and 732 mbsf at Site 833. Thomsonite is no longer observed below 732 mbsf at Site 833. Heulandite is present to the base of the sections cored. The zeolite assemblages are associated with authigenic clay minerals (nontronite and saponite), calcite, and quartz. Chlorite is noticeable at Site 832 as deep as 851 mbsf. Zeolite zones are present but are less well defined at Site 832. Dolomite and rare magnesite are present below 940 m at Site 832. The coarse-grained authigenic mineral host intervals exhibit geochemical signatures that can be attributed to low grade hydrothermal alteration. The altered intervals show evidence of K2O, CaO, and rare earth elements mobilization. When compared to fine-grained, unaltered units, and to Santa Maria Island volcanics rocks, the altered zones are relatively depleted in rare earth elements, with light rare earth elements-heavy rare earth elements fractionation. Drilling at Site 833 penetrated a sill complex below 840 m. No sill was encountered at Site 832. Complex zonation of zeolite facies, authigenic smectites, carbonates and quartz, and associated geochemical signatures are present at both sites. The mineralogical and chemical alteration overprint is most pronounced in the deeper sections at Site 832. Based on mineralogical and chemical evidence at two locations less than 50 km apart, there is vertical and lateral variation in alteration of the volcaniclastic sediments of North Aoba Basin. The alteration observed may be activated by sill intrusion and associated expulsion of heated fluids into intervals of greater porosity. Such spatial variation in alteration could be attributed to the evolution of the basin axis associated with subduction processes along the New Hebrides Trench.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alteration products of basalts from the four holes drilled during Leg 81 were studied and found to be characterized by the widespread occurrence of trioctahedral clay minerals (Mg smectite to chlorite). In some cases zeolites (analcite, chabazite) are associated with the saponite. A more oxidizing stage is marked by a saponite-celadonite association, presenting the geochemical characteristics of hydrothermal processes. Later stages of alteration are represented by palagonitization and subaerial weathering at two sites. These different alteration processes of basalts from Leg 81 record the paleoenvironment during the first opening stages of the Northeast Atlantic Ocean in the Paleocene-Eocene periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basalts from Maud Rise, Weddell Sea, are vesicular and olivine-phyric. Major, trace, and rare earth element concentrations are similar to those of alkali basalts from ocean islands and seamounts. The rocks are low in MgO, Cr, Ni, and Sc, and high in TiO2, K2O, P2O5, Zr, and LREE contents. The abundance of "primary" biotite and apatite in the matrix indicates the melting of a hydrous mantle. Prevalence of olivine and absence of plagioclase in the rocks suggests that the volatile in the melt was an H2O-CO2 mixture, where H2O was <0.5. Mantle derived xenocrysts in the basalt include corroded orthopyroxene, chromite, apatite, and olivine. Olivine (Fo90) is too magnesian to be in equilibrium with the basalts, as they contain only 5-6 wt% MgO. Based on the presence of mantle xenocrysts, the high concentration of incompatible elements, the spatial and chemical affinity with other ocean island basalts from the area, and the relative age of the basalt (overlain by late Campanian sediments), it is suggested that Maud Rise was probably generated by hot-spot activity, possible during a ridge crest jump prior to 84 Ma (anomaly 34 time). Iddingsite, a complex intergrowth of montmorillonite and goethite, is the major alteration product of second generation olivine. It is suggested that iddingsite crystallized at low temperatures (<200°C) from an oxidized fluid during deuteric alteration. Vesicles are commonly filled by zeolites which have been replaced by K-feldspars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eocene to Pleistocene volcanogenic sediments from the Mariana Trough and the Mariana arc-trench system have been studied by X-ray diffraction, X-ray fluorescence, and atomic absorption, and with a scanning electron microscope with an X-ray-energy-dispersive attachment. The mineralogical composition of the volcaniclastic sediments (tuffs) is the same as that of the other associated sediments (mudstones). Diagenetic alterations are significant and seem to result from two processes. The first (low-temperature alteration) develops with age and depth; it consists of the genesis of pure smectite, coupled with zeolites (phillipsite, clinoptilolite). The second is limited to sediments immediately overlying basalts and to the altered basalts themselves. It consists of the massive development of palygorskite, and seems to be linked with hydrothermal activity in the igneous basement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-rich sediments were found in the West Philippine Basin at DSDP sites 291 (located about 500 km SW of the Philippine Ridge or Central Basin Fault) and 294/295 (located about 580 km NE of the Philippine Ridge). In both cases the metalliferous deposits constitute a layer, probably Eocene in age, resting directly above the basaltic basement at the bottom of the sediment column. The chemistry of the major (including Fe and Mn) and trace elements (including trace metals, rare earth elements, U and Th) suggest a strong similarity of these deposits to metalliferous deposits produced by hydrothermal activity at oceanic spreading centers. Well-crystallized hematite is a major component of the metal-rich deposits at site 294/295. We infer that the Philippine Sea deposits were formed at some spreading center by hydrothermal processes of metallogenesis, similar to processes occurring at oceanic spreading centers. A locus for their formation might have been the Philippine Ridge (Central Basin Fault), probably an extinct spreading center. We conclude that metallogenesis of the type occurring at oceanic spreading centers can take place also in marginal basins. This has implications for the origin of metal deposits found in some ophiolite complexes, such as those in Luzon (Philippines), which may represent fragments of former marginal basins rather than of oceanic lithosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentrations of rare earth elements (REEs) in seawater display systematic variations related to weathering inputs, particle scavenging and water mass histories. Here we investigate the REE concentrations of water column profiles in the Atlantic sector of the Southern Ocean, a key region of the global circulation and primary production. The data reveal a pronounced contrast between the vertical profiles in the Antarctic Circumpolar Current (ACC) and those to the south of the ACC in the Weddell Gyre (WG). The ACC profiles exhibit the typical increase of REE concentrations with water depth and a change in the shape of the profiles from near linear for the light REEs to more convex for the heavy REEs. In contrast, the WG profiles exhibit high REE concentrations throughout the water column with only the near surface samples showing slightly reduced concentrations indicative of particle scavenging. Seawater normalised REE patterns reveal the strong remineralisation signal in the ACC with the light REEs preferentially removed in surface waters and the mirror image pattern of their preferential release in deep waters. In the WG the patterns are relatively homogenous reflecting the prevalence of well-mixed Lower Circumpolar Deep Water (LCDW) that follows shoaling isopycnals in the region. In the WG particle scavenging of REEs is comparatively small and limited to the summer months by light limitation and winter sea ice cover. Considering the surface water depletion compared to LCDW and that the surface waters of the WG are replaced every few years, the removal rate is estimated to be on the order of 1 nmol/m3/yr for La and Nd. The negative cerium anomalies observed in deep waters are some of the strongest found globally with only the deepest waters in parts of the Pacific having stronger anomalies. These deep waters have been isolated from fresh continental REE inputs during their long journey through the abyssal Indo-Pacific ocean and suggests that the high REE concentrations found in the ACC and WG reflect contributions from old deep waters.