943 resultados para Préalpes, Foraminifera, Briançonnais,


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past decade, the ratio of Mg to Ca in foraminiferal tests has emerged as a valuable paleotemperature proxy. However, large uncertainties remain in the relationships between benthic foraminiferal Mg/Ca and temperature. Mg/Ca was measured in benthic foraminifera from 31 high-quality multicore tops collected in the Florida Straits, spanning a temperature range of 5.8° to 18.6°C. New calibrations are presented for Uvigerina peregrina, Planulina ariminensis, Planulina foveolata, and Hoeglundina elegans. The Mg/Ca values and temperature sensitivities vary among species, but all species exhibit a positive correlation that decreases in slope at higher temperatures. The decrease in the sensitivity of Mg/Ca to temperature may potentially be explained by Mg/Ca suppression at high carbonate ion concentrations. It is suggested that a carbonate ion influence on Mg/Ca may be adjusted for by dividing Mg/Ca by Li/Ca. The Mg/Li ratio displays stronger correlations to temperature, with up to 90% of variance explained, than Mg/Ca alone. These new calibrations are tested on several Last Glacial Maximum (LGM) samples from the Florida Straits. LGM temperatures reconstructed from Mg/Ca and Mg/Li are generally more scattered than core top measurements and may be contaminated by high-Mg overgrowths. The potential for Mg/Ca and Mg/Li as temperature proxies warrants further testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is based on Cenomanian sediments of Ocean Drilling Program (ODP) Sites 1258 and 1260 from Demerara Rise (Leg 207, western tropical Atlantic, off Suriname, ~1000 and ~500 m paleo-water depth, respectively). Studied sediments consist of laminated black shales with TOC values between 3 and 18% and include the Mid Cenomanian Event (MCE), a positive carbon isotope excursion predating the well-known Oceanic Anoxic Event 2 (OAE 2). Benthic foraminiferal assemblages of the continuously eutrophic environment at Demerara Rise are characterized by low diversities (<= 9 species per sample) and large fluctuations in abundances, indicating oxygen depletion and varying organic matter fluxes. Dominant species at both sites are Bolivina anambra, Gabonita levis, Gavelinella dakotensis, Neobulimina albertensis, Praebulimina prolixa, and Tappanina cf. laciniosa. Benthic foraminiferal assemblages across the MCE show a threefold pattern: (1) stable ecological conditions below the MCE interval indicated by relatively high oxygenation and fluctuating organic matter flux, (2) decreasing oxygenation and/or higher organic matter flux during the MCE with decreasing benthic foraminiferal numbers and diversities (Site 1258) and a dominance of opportunistic species (Site 1260), and (3) anoxic to slightly dysoxic bottom-water conditions above the MCE as indicated by very low diversities and abundances or even the absence of benthic foraminifera. Slightly dysoxic conditions prevailed until OAE 2 at Demerara Rise. A comparison with other Atlantic Ocean and Tethyan sections indicates that the MCE reflects a paleoceanographic turning point towards lower bottom-water oxygenation, at least in the proto-North Atlantic Ocean and in the Tethyan and Boreal Realms. This general trend towards lower oxygenation of bottom waters across the MCE is accompanied by ongoing climate warming in combination with rising sea-level and the development of vast shallow epicontinental seas during the Middle and Late Cenomanian. These changes are proposed to have favoured the formation of warm and saline waters that may have contributed to intermediate- and deep-water masses at least in the restricted proto-North Atlantic and Tethyan Ocean basins, poor oxygenation of the Late Cenomanian sediments, and the changes in benthic foraminiferal assemblages across the MCE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

About one third of the anthropogenic carbon dioxide (CO2) released into the atmosphere in the past two centuries has been taken up by the ocean. As CO2 invades the surface ocean, carbonate ion concentrations and pH are lowered. Laboratory studies indicate that this reduces the calcification rates of marine calcifying organisms, including planktic foraminifera. Such a reduction in calcification resulting from anthropogenic CO2 emissions has not been observed, or quantified in the field yet. Here we present the findings of a study in the Western Arabian Sea that uses shells of the surface water dwelling planktic foraminifer Globigerinoides ruber in order to test the hypothesis that anthropogenically induced acidification has reduced shell calcification of this species. We found that light, thin-walled shells from the surface sediment are younger (based on 14C and d13C measurements) than the heavier, thicker-walled shells. Shells in the upper, bioturbated, sediment layer were significantly lighter compared to shells found below this layer. These observations are consistent with a scenario where anthropogenically induced ocean acidification reduced the rate at which foraminifera calcify, resulting in lighter shells. On the other hand, we show that seasonal upwelling in the area also influences their calcification and the stable isotope (d13C and d18O) signatures recorded by the foraminifera shells. Plankton tow and sediment trap data show that lighter shells were produced during upwelling and heavier ones during non-upwelling periods. Seasonality alone, however, cannot explain the 14C results, or the increase in shell weight below the bioturbated sediment layer. We therefore must conclude that probably both the processes of acidification and seasonal upwelling are responsible for the presence of light shells in the top of the sediment and the age difference between thick and thin specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An almost complete Upper Cretaceous sedimentary sequence recently recovered on the Kerguelen Plateau (southern Indian Ocean) during ODP Leg 183 was analysed for planktonic foraminifera in order to refine and integrate the zonal schemes previously proposed for the Southern Ocean area. Detailed biostratigraphic analysis carried out on holes 1135A, 1136A and 1138A (poleward of 50°S palaeolatitude during Late Cretaceous time) has allowed recognition of low and mid-high latitude bioevents, useful for correlation across latitudes, in addition to known Austral bioevents. The low latitude biozonation can be applied to Turonian sediments, because of the occurrence of Helvetoglobotruncana helvetica, which marks the boundary between Whiteinella archaeocretacea and Helvetoglobotruncana helvetica zones. The base of the Whiteinella archeocretacea Zone falls within the uppermost Cenomanian-Turonian black shale level in Hole 1138A. The stratigraphic interval from upper Turonian to uppermost Santonian can be resolved using bioevents recognized in the mid-high latitude sections. They are, in stratigraphic order: the last occurrence of Falsotruncana maslakovae in the Coniacian, the first occurrence of Heterohelix papula at the Coniacian/Santonian boundary, the extinction of the marginotruncanids in the late Santonian, and the first occurrence of Globigerinelloides impensus in the latest (?) Santonian. The remainder of the Late Cretaceous fits rather well in the Austral zonal scheme, except that Globigerinelloides impensus exhibits a stratigraphic range in agreement with its record at the mid-high latitude sections and extends further downwards than previously recorded at southern sites. Therefore, despite the poor recovery in certain intervals and the presence of several hiatuses of local and regional importance as revealed by correlation among holes, a more detailed zonal scheme has been obtained (mainly for the less resolved Turonian-Santonian interval). Remarks on some species often overlooked in literature are also provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program Site 1146 was drilled within a small rift basin on the midcontinental slope of the northern South China Sea. It is located at 19°27.4'N, 116°16.37'E, in 2092 m water depth. This site was drilled to recover records of Asian monsoon variability into the middle Miocene with temporal resolution sufficient for orbital-scale analyses. Here we present oxygen and carbon isotopic measurements of planktonic foraminifers (Globigerinoides ruber) and benthic foraminifers (Uvigerina peregrina and Cibicides wuellerstorfi) as well as a preliminary age model for the top 185 meters composite depth (mcd).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three marine sediment cores distributed along the Norwegian (MD95-2011), Barents Sea (JM09-KA11-GC), and Svalbard (HH11-134-BC) continental margins have been investigated in order to reconstruct changes in the poleward flow of Atlantic waters (AW) and in the nature of upper surface water masses within the eastern Nordic Seas over the last 3000 yr. These reconstructions are based on a limited set of coccolith proxies: the abundance ratio between Emiliania huxleyi and Coccolithus pelagicus, an index of Atlantic vs. Polar/Arctic surface water masses; and Gephyrocapsa muellerae, a drifted coccolith species from the temperate North Atlantic, whose abundance changes are related to variations in the strength of the North Atlantic Current. The entire investigated area, from 66 to 77° N, was affected by an overall increase in AW flow from 3000 cal yr BP (before present) to the present. The long-term modulation of westerlies' strength and location, which are essentially driven by the dominant mode of the North Atlantic Oscillation (NAO), is thought to explain the observed dynamics of poleward AW flow. The same mechanism also reconciles the recorded opposite zonal shifts in the location of the Arctic front between the area off western Norway and the western Barents Sea-eastern Fram Strait region. The Little Ice Age (LIA) was governed by deteriorating conditions, with Arctic/Polar waters dominating in the surface off western Svalbard and western Barents Sea, possibly associated with both severe sea ice conditions and a strongly reduced AW strength. A sudden short pulse of resumed high WSC (West Spitsbergen Current) flow interrupted this cold spell in eastern Fram Strait from 330 to 410 cal yr BP. Our dataset not only confirms the high amplitude warming of surface waters at the turn of the 19th century off western Svalbard, it also shows that such a warming was primarily induced by an excess flow of AW which stands as unprecedented over the last 3000 yr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages of distinctive taxonomic composition occur at the top of benthic fossil-free black shales which correspond to the anoxic event at the Cenomanian/Turonian boundary in the North Atlantic abyssal DSDP/ODP sites 386, 398, 603 and 641. These assemblages consist of minute, thin-walled agglutinated foraminifera with low specific diversity of 2 to 4 species, variable abundance and dominance of few taxa (Haplophragmoides, Rhizammina and Glomospira). The species are inferred to be opportunistic, able to survive in low-oxygen environments and to be pioneers recolonizing the seafloor after cessation of bottom-water anoxia. Most species are characterized by test morphologies with high surface/volume ratios and single-layered wall structures, with loosely agglutinated grains, and small amounts of organic cement for agglutination. These features are best observed in material from ODP Hole 641A which has exceptional foraminiferai preservation because of its shallow burial depth. The successive appearance of benthic foraminifera after the anoxic event is probably controlled by the continuous reoccurrence of more oxygenated bottom- and interstitial-water conditions. With the final development of oxic bottom-water conditions in the Turonian, a rapid radiation of deep-water agglutinated foraminifera occurred in the North Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution stratigraphy based on oxygen isotope ratios of the planktonic foraminifers Neogloboquadrina dutertrei (d'Orbigny), Globigeriniodes ruber (d'Orbigny), and Globigerina bulloides (d'Orbigny), magnetic susceptibility, and calcium carbonate content covers the sedimentary record of ODP Hole 728A drilled on the Oman Margin from approximately 10 k.y. to 525 k.y., comprising isotopic stages 1-13. Below stage 13 isotopic stage boundaries cannot be defined with certainty in our data. Sediment accumulation rates were calculated from the isotopic record of N. dutertrei by matching it with the age model SPECMAP curve. During the glacial periods sediment accumulation rates were higher than during the interglacial periods, reflecting increased input from the shelf during low-stands of sea level and increased eolian input. Periodograms for the past 524 k.y. on oxygen isotope records of N. dutertrei, G. ruber, and G. bulloides, on calcium carbonate content, magnetic susceptibility, and on a foraminiferal fragmentation record show powers matching the Milankovitch periodicities. High powers are concentrated around 103 k.y. In the spectra of oxygen isotope ratios of N. dutertrei, magnetic susceptibility, and foraminiferal fragmentation these are significant at the 80% confidence level with respect to a first order autoregressive model. Power concentrations near 43 k.y., matching obliquity, are present but subdued in all spectra. Power concentrations near 23 k.y., matching precession, are significant in the spectra of the oxygen isotope record of N. dutertrei, magnetic susceptibility, and calcium carbonate content record. Fragmentation of planktonic foraminifers increased during the interglacial periods. This is attributed to dissolution of the tests in an expanded oxygen minimum zone (OMZ), where undersaturation of calcium carbonate is caused by enhanced production in the euphotic zone, which would suggest stronger monsoonal induced upwelling during interglacial periods. Extension of the OMZ could also be increased by outflow of low oxygen marginal basin bottom water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indicators of surface-water productivity and bottom-water oxygenation have been studied for the age interval from the latest Pleistocene to the Holocene at three holes (679D, 680B, and 68IB) located in the center and at the edges of an upwelling cell at approximately 11°S on the Peruvian continental margin. Upwelling activity was maximal at this latitude during d18O Stages 1 (lower part), 3, the upper part of 5, the lower part of 6, and 7, as documented by high diatom abundance. During these time intervals, the bottom water was poorly oxygenated, as documented by low diversity benthic foraminiferal assemblages that are dominated by B. seminuda s.l. Both surface- and bottom-water-circulation patterns appear to have changed rapidly over short time intervals. Due to changes in surface circulation, the intensity of upwelling decreased, thereby decreasing the concentration of nutrients, and reducing the supply of organic matter to the bottom. Radiolarians became more abundant in the surface waters, and the bottom-water environment was less depleted in oxygen, allowing for the establishment of more diverse benthic foraminiferal assemblages. Surface-water productivity was probably minimal during the early part of d18O Stages 5 and 9, as indicated by the increased abundance of planktonic foraminifers and pteropods and their subsequent preservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary Mg/Ca ratio of foraminiferal shells is a potentially valuable paleoproxy for sea surface temperature (SST) reconstructions. However, the reliable extraction of this ratio from sedimentary calcite assumes that we can overcome artifacts related to foraminiferal ecology and partial dissolution, as well as contamination by secondary calcite and clay. The standard batch method for Mg/Ca analysis involves cracking, sonicating, and rinsing the tests to remove clay, followed by chemical cleaning, and finally acid-digestion and single-point measurement. This laborious procedure often results in substantial loss of sample (typically 30-60%). We find that even the earliest steps of this procedure can fractionate Mg from Ca, thus biasing the result toward a more variable and often anomalously low Mg/Ca ratio. Moreover, the more rigorous the cleaning, the more calcite is lost, and the more likely it becomes that any residual clay that has not been removed by physical cleaning will increase the ratio. These potentially significant sources of error can be overcome with a flow-through (FT) sequential leaching method that makes time- and labor-intensive pretreatments unnecessary. When combined with time-resolved analysis (FT-TRA) flow-through, performed with a gradually increasing and highly regulated acid strength, produces continuous records of Mg, Sr, Al, and Ca concentrations in the leachate sorted by dissolution susceptibility of the reacting material. Flow-through separates secondary calcite from less susceptible biogenic calcite and clay, and further resolves the biogenic component into primary and more resistant fractions. FT-TRA reliably separates secondary calcite (which is not representative of original life habitats) from the more resistant biogenic calcite (the desired signal) and clay (a contaminant of high Mg/Ca, which also contains Al), and further resolves the biogenic component into primary and more resistant fractions that may reflect habitat or other changes during ontogeny. We find that the most susceptible fraction of biogenic calcite in surface dwelling foraminifera gives the most accurate value for SST and therefore best represents primary calcite. Sequential dissolution curves can be used to correct the primary Mg/Ca ratio for clay, if necessary. However, the temporal separation of calcite from clay in FT-TRA is so complete that this correction is typically <=2%, even in clay-rich sediments. Unlike hands-on batch methods, that are difficult to reproduce exactly, flow-through lends itself to automation, providing precise replication of treatment for every sample. Our automated flow-through system can process 22 samples, two system blanks, and 48 mixed standards in <12 hours of unattended operation. FT-TRA thus represents a faster, cheaper, and better way to determine Mg/Ca ratios in foraminiferal calcite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The climate during the Cenozoic era changed in several steps from ice-free poles and warm conditions to ice-covered poles and cold conditions. Since the 1950s, a body of information on ice volume and temperature changes has been built up predominantly on the basis of measurements of the oxygen isotopic composition of shells of benthic foraminifera collected from marine sediment cores. The statistical methodology of time series analysis has also evolved, allowing more information to be extracted from these records. Here we provide a comprehensive view of Cenozoic climate evolution by means of a coherent and systematic application of time series analytical tools to each record from a compilation spanning the interval from 4 to 61 Myr ago. We quantitatively describe several prominent features of the oxygen isotope record, taking into account the various sources of uncertainty (including measurement, proxy noise, and dating errors). The estimated transition times and amplitudes allow us to assess causal climatological-tectonic influences on the following known features of the Cenozoic oxygen isotopic record: Paleocene-Eocene Thermal Maximum, Eocene-Oligocene Transition, Oligocene-Miocene Boundary, and the Middle Miocene Climate Optimum. We further describe and causally interpret the following features: Paleocene-Eocene warming trend, the two-step, long-term Eocene cooling, and the changes within the most recent interval (Miocene-Pliocene). We review the scope and methods of constructing Cenozoic stacks of benthic oxygen isotope records and present two new latitudinal stacks, which capture besides global ice volume also bottom water temperatures at low (less than 30°) and high latitudes. This review concludes with an identification of future directions for data collection, statistical method development, and climate modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic foraminiferal delta13C data from site 502 in the Caribbean Sea (sill depth ?1800 m) indicate that throughout the past 2.6 m.y., glacial delta13C values in the middepth Atlantic were higher during glaciations than interglaciations. This is interpreted as indicating a greater proportion of Upper North Atlantic Deep Water (UNADW) relative to southern source waters during glaciations. The contribution of UNADW during interglaciations to the middepth Atlantic remained approximately constant, and the contribution during glaciations may have been as much as 10 % higher in the late Pleistocene than in the late Pliocene. This small increase is in striking contrast to the much larger decrease in glacial Lower North Atlantic Deep Water (LNADW) contribution relative to southern sources, from about 80% to about 20%, that occurred over the past 2.6 m.y. Glacial intensification over the past 2.6 m.y. was probably coupled with a decrease in northward heat transport by the upper limb of the North Atlantic circulation cell, as was previously suggested on the basis of a LNADW record alone. Late Pleistocene (1 Ma-present) delta13C values in the Caribbean Sea were approximately 0.2? higher than they were from 2.6 to 2.0 Ma. The delta13C rise is not due to an increase in the mean ocean delta13C value, nor can it be entirely attributed to an increase in the proportion of high-delta13C source waters. An increase in the delta13C value of the surface source waters must have contributed to the delta13C rise.