334 resultados para Optical emission


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of volcanic activity on submarine hydrothermal systems has been well documented along fast- and intermediate-spreading centers but not from slow-spreading ridges. Indeed, volcanic eruptions are expected to be rare on slow-spreading axes. Here we report the presence of hydrothermal venting associated with extremely fresh lava flows at an elevated, apparently magmatically robust segment center on the slow-spreading southern Mid-Atlantic Ridge near 5°S. Three high-temperature vent fields have been recognized so far over a strike length of less than 2 km with two fields venting phase-separated, vapor-type fluids. Exit temperatures at one of the fields reach up to 407°C, at conditions of the critical point of seawater, the highest temperatures ever recorded from the seafloor. Fluid and vent field characteristics show a large variability between the vent fields, a variation that is not expected within such a limited area. We conclude from mineralogical investigations of hydrothermal precipitates that vent-fluid compositions have evolved recently from relatively oxidizing to more reducing conditions, a shift that could also be related to renewed magmatic activity in the area. Current high exit temperatures, reducing conditions, low silica contents, and high hydrogen contents in the fluids of two vent sites are consistent with a shallow magmatic source, probably related to a young volcanic eruption event nearby, in which basaltic magma is actively crystallizing. This is the first reported evidence for direct magmatic-hydrothermal interaction on a slow-spreading mid-ocean ridge.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Terrestrial permafrost archives along the Yukon Coastal Plain (northwest Canada) have recorded landscape development and environmental change since the Late Wisconsinan at the interface of unglaciated Beringia (i.e. Komakuk Beach) and the northwestern limit of the Laurentide Ice Sheet (i.e. Herschel Island). The objective of this paper is to compare the late glacial and Holocene landscape development on both sides of the former ice margin based on permafrost sequences and ground ice. Analyses at these sites involved a multi-proxy approach including: sedimentology, cryostratigraphy, palaeoecology of ostracods, stable water isotopes in ground ice, hydrochemistry, and AMS radiocarbon and infrared stimulated luminescence (IRSL) dating. AMS and IRSL age determinations yielded full glacial ages at Komakuk Beach that is the northeastern limit of ice-free Beringia. Herschel Island to the east marks the Late Wisconsinan limit of the northwest Laurentide Ice Sheet and is composed of ice-thrust sediments containing plant detritus as young as 16.2 cal ka BP that might provide a maximum age on ice arrival. Late Wisconsinan ice wedges with sediment-rich fillings on Herschel Island are depleted in heavy oxygen isotopes (mean d18O of -29.1 per mil); this, together with low d-excess values, indicates colder-than-modern winter temperatures and probably reduced snow depths. Grain-size distribution and fossil ostracod assemblages indicate that deglaciation of the Herschel Island ice-thrust moraine was accompanied by alluvial, proluvial, and eolian sedimentation on the adjacent unglaciated Yukon Coastal Plain until ~11 cal ka BP during a period of low glacio-eustatic sea level. The late glacial-Holocene transition was marked by higher-than-modern summer temperatures leading to permafrost degradation that began no later than 11.2 cal ka BP and caused a regional thaw unconformity. Cryostructures and ice wedges were truncated while organic matter was incorporated and soluble ions were leached in the thaw zone. Thermokarst activity led to the formation of ice-wedge casts and deposition of thermokarst lake sediments. These were subsequently covered by rapidly accumulating peat during the early Holocene Thermal Maximum. A rising permafrost table, reduced peat accumulation, and extensive ice-wedge growth resulted from climate cooling starting in the middle Holocene until the late 20th century. The reconstruction of palaeolandscape dynamics on the Yukon Coastal Plain and the eastern Beringian edge contributes to unraveling the linkages between ice sheet, ocean, and permafrost that have existed since the Late Wisconsinan.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The data shows Mg/Ca ratios of single specimens of the planktonic foraminifera Globigerinoides ruber (pink and white variety) and Globorotalia Inflata from a sediment trap anchored off Cape Blanc (NW-Africa). Mg/Ca ratios were determined on an ICP-MS and ICP-OES at the University of Bremen, after flow-through cleaning. Additionally, shells sizes and calculated shell weights are provided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During Termination 1, millennial-scale weakening events of the Atlantic meridional overturning circulation (AMOC) supposedly produced major changes in sea surface temperatures (SSTs) of the western South Atlantic, and in mean air temperatures (MATs) over southeastern South America. It has been suggested, for instance, that the Brazil Current (BC) would strengthen (weaken) and the North Brazil Current (NBC) would weaken (strengthen) during slowdown (speed-up) events of the AMOC. This anti-phase pattern was claimed to be a necessary response to the decreased North Atlantic heat piracy during periods of weak AMOC. However, the thermal evolution of the western South Atlantic and the adjacent continent is so far largely unknown. Here we address this issue, presenting high-temporal-resolution SST and MAT records from the BC and southeastern South America, respectively. We identify a warming in the western South Atlantic during Heinrich Stadial 1 (HS1), which is followed first by a drop and then by increasing temperatures during the Bølling-Allerød, in phase with an existing SST record from the NBC. Additionally, a similar SST evolution is shown by a southernmost eastern South Atlantic record, suggesting a South Atlantic-wide pattern in SST evolution during most of Termination 1. Over southeastern South America, our MAT record shows a two-step increase during Termination 1, synchronous with atmospheric CO2 rise (i.e., during the second half of HS1 and during the Younger Dryas), and lagging abrupt SST changes by several thousand years. This delay corroborates the notion that the long duration of HS1 was fundamental in driving the Earth out of the last glacial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 10Be/9Be-based chronostratigraphy has been determined for ODP 181, Site 1121 sediment core, recovered from the foot of the Campbell Plateau, Southwest Pacific Ocean. This core was drilled through the Campbell 'skin drift' in ca. 4500 m water depth on the mid-western margin of the extensive Campbell Nodule Field, beneath the flow of the major cold-water Deep Western Boundary Current (DWBC). In the absence of detailed biostratigraphy, beryllium isotopes have provided essential time information to allow palaeo-environmental interpretation to be undertaken on the upper 7 m of the core. Measured 10Be/9Be ratios of sediment, and of ferromanganese nodules entrapped in the sediment, decrease systematically with depth in the core, in accordance with radioactive decay. However, the 10Be/9Be data diverge from ca. 3 m below the seafloor (mbsf) to the top of the core, giving rise to several possible geochronological models. The preferred model assumes that the measured 10Be/9Be ratios of the nodule rims reflect initial 10Be/9Be ratios equivalent to contemporary seawater, and that these can be used to derive the true age of the sediment where the nodules occur. The nodule rim ages can be then used to interpret the sediment 10Be/9Be data, which indicate an overall age to ca. 7 mbsf of ca. 17.5 Ma. The derived chronology is consistent with diatom biostratigraphy, which indicates an age of 2.2-3.6 Ma at 1 mbsf. Calculated sedimentation rates range from 8 to 95 cm m.y.**-1, with an overall rate to 7 mbsf of ca. 39 cm m.y.**-1. The lowest rates generally coincide with the occurrence of entrapped nodules, and reflect periods of increased bottom current flow causing net sediment loss. Growth rates of individual nodules decrease towards the top of the sediment core, similar to the observed decrease in growth rate from core to rim of seafloor nodules from the Campbell Nodule Field. This may be related to an overall increase in the vigour of the DWBC from ca. 10 Ma to the present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigations of borehole waters sampled in Hole 504B during Leg 92 revealed changes in major-ion composition similar to changes observed previously (during Leg 83). The uniformity of chloride concentrations with increasing depth suggests efficient downhole mixing processes along density gradients caused by large temperature gradients. Chemical and mineralogical studies of suspended drilling mud (bentonite) suggest that this material has undergone substantial alteration and that CaSO4 (anhydrite/gypsum) has precipitated in the deeper parts of the hole. Rare earth element studies suggest contributions of both the bentonites and the basalts to the REE distributions. Studies of the isotopic composition (87Sr/86Sr) of dissolved strontium indicate a strong contribution of basaltic nonradiogenic strontium, although differences between the Leg 83 and Leg 92 data indicate an influence of bentonite during Leg 92. The oxygen isotope composition of the water does not change appreciably downhole. This uniformity can be understood in terms of high water-rock ratios and suggests that the chemical changes observed are due either to alteration processes involving bentonites and basaltic material from the walls of the hole or to exchange with formation fluids from the surrounding basement, which may have altered in composition at relatively high water-rock ratios.