800 resultados para Minerals.
Resumo:
The majority of the basalts drilled on Leg 65 in the Gulf of California are aphyric to sparsely phyric massive flows ranging in average thickness between 5 meters in the upper part of the sections in Holes 483 and 483B, where they are interlayered with sediment, and 14 meters in Hole 485A, where interlayered sediments constitute more than half of the section. Massive flows interlayered with pillows are generally less than 4 meters thick. The pillow lavas recovered are more phyric (up to 15 modal%) and contain two to three generations of plagioclase and olivine ± clinopyroxene. Plagioclase generally exceeds 60% of any given phenocryst assemblage. Resorbed olivine, clinopyroxene, and plagioclase megacrysts may reflect a high-pressure stage, the phenocrysts crystallizing in the main magma chamber and the skeletal microphenocrysts in dikes. Precise measurements of length/width ratios of different phenocryst types and compositions show low aspect ratios and large crystal volumes for early crystals and high ratios and low volumes for late crystals grown under strong undercooling conditions. The minerals examined show wide ranges in composition: in particular, plagioclase ranges from An92 to An36; clinopyroxene ranges from Ca41Mg51Fe8 in the cores of phenocrysts to Ca40**36 Mg45**49Fe15**20 in the groundmass; and olivine ranges from Fo86 to Fo81. The wide range in mineral compositions, together with evidence of disequilibrium based on textures and comparisons of glass and mineral compositions, indicate complex crystallization histories involving both polybaric crystal fractionation and magma mixing.
Resumo:
Heavy-mineral analyses were made for 39 samples, 27 from DSDP Site 445 and 12 from Site 446. About one-fourth of the samples were so loose that they were easily disaggregated in water. The amount of heavy residue and the magnetite content of the heavy fraction were very high, 0.2 to 44 per cent and (on the average) more than 20 per cent, respectively. Among the non-opaque heavy minerals, common hornblende (0 to 80%) and augite (0 to 98%) are most abundant. Pale-green and bluish-green amphiboles (around 10%) and the epidote group (a few to 48%) are next in abundance. Euhedral apatite and biotite and irregularly shaped chromite are not abundant, but are present throughout the sequence. Hacksaw structure is developed in pale-green amphibole and augite. At Site 445, a fair amount of chlorite and a few glauconite(?) grains are present from Core 445-81 downward. The content of common hornblende and opaque minerals also changes from Core 445-81 downward. A geological boundary may exist between Cores 445-77 and 445-81. Source rocks of the sediments at both sites were basaltic volcanic rocks (possibly alkali suite), schists, and ultramafic rocks. The degree of lithification and amount of heavy residue, and the content of magnetite, non-opaque heavy minerals (excluding mafic minerals), and mafic minerals in the cores were compared with Eocene, Oligocene, and Miocene sandstones of southwest Japan. In many respects, the sediments at Sites 445 and 446 are quite different from those of southwest Japan. From the early Eocene to the early Miocene, the area of these sites belonged to a different geologic province than southwest Japan.
Resumo:
Heavy and light minerals were examined in 29 samples from Sites 494, 498, 499, 500, and 495 on the Deep Sea Drilling Project Leg 67 Middle America Trench transect; these sites represent lower slope, trench, and oceanic crust environments off Guatemala. All samples are Quaternary except those from Hole 494A (Pliocene) and Hole 498A (Miocene). Heavy-mineral assemblages of the Quaternary sediments are characterized by an immature pyroxene-amphibole suite with small quantities of olivine and epidote. The Miocene sediments yielded an assemblage dominated by epidote and pyroxene but lacking olivine; the absence of olivine is attributed to selective removal of the most unstable components by intrastratal solution. Light-mineral assemblages of all samples are predominantly characterized by volcanic glass and plagioclase feldspar. The feldspar compositions are compatible with andesitic source rocks and frequently exhibit oscillatory zoning. The heavy- and light-mineral associations of these sediments suggest a proximal volcanic source, most probably the Neogene highland volcanic province of Guatemala. Sand-sized components from Site 495 are mainly biogenic skeletons and volcanic glass and, in one instance (Section 495-5-3), euhedral crystals of gypsum.
Resumo:
Mineralogical and oxygen isotopic analyses of samples from Deep Sea Drilling Project Sites 477, 481, and 477 in the Guaymas Basin indicate the existence of two distinct hydrothermal systems. In the first, at Sites 481 and 478, hot dolerite sills intruded into highly porous hemipelagic siliceous mudstones that were moderately rich in organic matter, thermally altered the adjacent sediments, and expelled hydrothermal pore fluids. The second, at Site 477 and active at present, is most probably caused by a recent igneous intrusion forming a magma chamber at shallow depth. In the first hydrothermal system, the main thermal reactions above and below the sills are dissolution of opal-A and formation of quartz, either directly or through opal-CT; formation of smectite; formation of analcime only above the sills; dissolution and recrystallization of calcite and occasional formation of dolomite or protodolomite. The d18O values of the hydrothermally altered sediments range from 9.9 to 12.2 per mil (SMOW). The d18O values of recrystallized calcites above the first sill complex, Site 481, indicate temperatures of 140° to 170°C. No fluid recharge is required in this system. The thickness of the sill complexes and the sequence and depth of intrusion into the sediment column determine the thickness of the alteration zones, which ranges from 2 or 3 to approximately 50 meters. Generally, the hydrothermally altered zone is thicker above than below the sill. In the second type, the sediments are extensively recrystallized. The characteristic greenschist-facies mineral assemblage of quartz-albite-chlorite-epidote predominates. Considerable amounts of pyrite, pyrrhotite, and sphene are also present. The lowest d18O value of the greenschist facies rocks is 6.6 per mil, and the highest d18O value of the associated pore fluids is +1.38 per mil (SMOW). The paragenesis and the oxygen isotopes of individual phases indicate alteration temperatures of 300 ± 50°C. On the basis of the oxygen isotopes of the solids and associated fluids, it is concluded that recharge of fluids is required. The water/rock ratio in wt.% is moderate, approximately 2/1 to 3/1 - higher than the calculated water/rock ratio of the hydrothermal system at the East Pacific Rise, 21 °N.
Mineralogy and stable isotopic composition of carbonates and sulfide minerals from ODP Leg 164 sites
Resumo:
During Ocean Drilling Program Leg 164, gas hydrates were recovered in the Blake Ridge where the top of the gas hydrate zone lies at about 200 meters below seafloor (mbsf) and the bottom-simulating reflector (BSR) is located at about 450 mbsf. There is no sedimentological discontinuity crossing the BSR. The BSR is disrupted by the salt piercement of the Cape Fear Diapir. The authigenic carbonates (dolomite and siderite) are always present in small amounts (a few weight percent) in the sediments; they are also concentrated in millimeter- to centimeter-sized nodules and layers composed of dolomite above the top of the gas hydrate reservoir, and of siderite below the BSR. In the Blake Ridge, the dolomite/siderite boundary is located near 140 mbsf. The distribution with depth of the d18O values of dolomite and siderite shows a sharp decrease from high values (maximum 7.5 per mil) in the topmost 50 m, to very low values (minimum -2.7 per mil) at 140 mbsf, and at greater depth increase to positive values within the range of 1.8 per mil to 5.0 per mil. The d13C distribution is marked by the rapid increase with greater depth from low values (-31.3 per mil to -11.4 per mil) near 50 mbsf to positive values at 110 mbsf, which remain in the range of 1.7 to 5.4 down to 700 mbsf. Diagenetic carbonates were precipitated in pore waters in which d18O and d13C values were highly modified by strong fractionation effects, both in the water and in the CO2-CH4 systems associated with the formation and dissociation of gas hydrates.