619 resultados para MIOCENE
Resumo:
Vierlandian, Behrendorfian (Lower Hemmoorian), Oxlundian (Upper Hemmoorian), Lower and Upper Reinbekian, Langenfeldian and Gramian stages could be proved by evaluation of marine molluscan faunas. The diachrone base of 'Braunkohlensande' is demonstrated by underlying Vierlandian mica clay in the E, and by Hemmoorian substages more to the W, at last the fluviatile facies is replaced completely by euhaline to brachyhaline sandy to silty sediments. Brachyhaline effects in adjacent environments make possible an approximate dating on fluviatile sedimentation. The widest extension of 'Braunkohlensand' is during upper Oxlundian, whilst slightly brachyhaline Katzheide beds, defined in this paper to be of Lower Reinbekian age, indicate a limit of 'Braunkohlensande' more to the E. Winnert-fauna was found to be a mixture of Oxlundian and Langenfeldian; the overlying lignitic sands belong to the Kaolinsand group. Upper mica clay overlying Miocene Braunkohlensande can be divided into beds of Upper Reinbekian, Langenfeldian and Gramian ages.
Resumo:
We correlated Miocene d18O increases at Ocean Drilling Program Site 747 with d18O increases previously identified at North Atlantic Deep Sea Drilling Project Sites 563 and 608. The d18O increases have been directly tied to the Geomagnetic Polarity Time Scale (GPTS) at Site 563 and 608, and thus our correlations at Site 747 provide a second-order correlation to the GPTS. Comparison of the oxygen isotope record at Site 747 with records at Sites 563 and 608 indicates that three as-yet-undescribed global Miocene d18O increases may be recognized and used to define stable isotope zones. The d18O maxima associated with the bases of Zones Mila, Milb, and Mi7 have magnetochronologic age estimates of 21.8, 18.3, and 8.5 Ma, respectively. The correlation of a d18O maximum at 70 mbsf at Site 747 to the base of Miocene isotope Zone Mi3 (13.6 Ma) provides a revised interpretation of four middle Miocene normal polarity intervals observed between 77 and 63 mbsf at Hole 747A. Oxygen isotope stratigraphy indicates that the reversed polarity interval at 70 mbsf, initially interpreted as Chronozone C5AAr, should be C5ABr. Instead of a concatenated Chronozone C5AD-C5AC with distinct Chronozones C5AB, C5AA, and C5A (as in the preliminary interpretation), d18O stratigraphy suggests that these normal polarity intervals are Chronozones C5AD, C5AC, and C5AB, whereas Chronozones C5AA-C5A are concatenated. This interpretation is supported by the d13C correlations. The upper Miocene magnetostratigraphic record at Hole 747A is ambiguous. Two upper Miocene d18O events at Site 747 can be correlated to the oxygen isotope records at Site 563 and 608 using the magnetostratigraphy derived at Hole 747B. Our chronostratigraphic revisions highlight the importance of stable isotope stratigraphy in attaining an integrated stratigraphic framework for the Miocene.