497 resultados para MICROSECOND TIME REGION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term vegetation succession and permafrost dynamics in subarctic peat plateaus of west-central Canada have been studied through detailed plant macrofossil analysis and extensive AMS radiocarbon dating of two peat profiles. Peatland inception at these sites occurred around 5800-5100 yr BP (6600-5900 cal. BP) as a result of paludification of upland forests. At the northern peat plateau site, located in the continuous permafrost zone, palaeobotanical evidence suggests that permafrost was already present under the forested upland prior to peatland development. Paludification was initiated by permafrost collapse, but re-aggradation of permafrost occurred soon after peatland inception. At the southern site, located in the discontinuous permafrost zone, the aggradation of permafrost occurred soon after peatland inception. In the peat plateaus, permafrost conditions have remained very stable until present. Sphagnum fuscum-dominated stages have alternated with more xerophytic communities characterized by ericaceous shrubs. Local peat fires have occurred, but most of these did not cause degradation of the permafrost. Starting from 2800-1100 yr BP (2900-1000 cal. BP) consistently dry surface conditions have prevailed, possibly related to continued frost heave or nearby polygon crack formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We assessed relationships between phytoplankton standing stock, measured as chlorophyll a (Chl a), primary production (PP), and heterotrophic picoplankton production (HPP), in the epipelagic zone (0-100 m) as well as in the mesopelagic zone (100-1,000 m) in the polar frontal zone of the Atlantic sector of the Southern Ocean in austral summer (late December to January) and fall (March to early May). Integrated epipelagic HPP was positively correlated to integrated PP in summer (data for fall are not available) but not to integrated Chl a. However, integrated mesopelagic HPP was positively correlated to Chl a in summer as well as fall. The mesopelagic fraction of HPP as a percentage of total HPP was also positively correlated to Chl a, whereas the epipelagic fraction of HPP was negatively correlated to it. These results indicate that with increasing phytoplankton standing stock, constituted mainly of highly silicified diatoms, the focus of its consumption by heterotrophic picoplankton shifts from epipelagic to mesopelagic waters. With a growth efficiency of 30%, our HPP data indicate that in both the epipelagic and mesopelagic zone heterotrophic picoplankton consume 20% of PP. Mesopelagic heterotrophic picoplankton consumed around 80% of the sinking flux, measured from depletion of 234Th, which is a lower fraction than that reported from the central and subarctic Pacific. Our analysis indicates that it is important to include mesopelagic HPP in comprehensive assessments of the microbial consumption of PP, phytoplankton biomass, and particulate organic matter in cold oceanic systems with high rates of export production.