311 resultados para Fractions of phosphorus
Resumo:
Paired Mg/Ca and d18O measurements on planktonic foraminiferal species (G. ruber white, G. ruber pink, G. sacculifer, G. conglobatus, G. aequilateralis, O. universa, N. dutertrei, P. obliquiloculata, G. inflata, G. truncatulinoides, G. hirsuta, and G. crassaformis) from a 6-year sediment trap time series in the Sargasso Sea were used to define the sensitivity of foraminiferal Mg/Ca to calcification temperature. Habitat depths and calcification temperatures were estimated from comparison of d18O of foraminifera with equilibrium calcite, based on historical temperature and salinity data. When considered together, Mg/Ca (mmol/mol) of all species, except two, show a significant (r = 0.93) relationship with temperature (T °C) of the form Mg/Ca = 0.38 (±0.02) exp 0.090 (±0.003)T, equivalent to a 9.0 ± 0.3% change in Mg/Ca for a 1°C change in temperature. Small differences exist in calibrations between species and between different size fractions of the same species. O. universa and G. aequilateralis have higher Mg/Ca than other species, and in general, data can be best described with the same temperature sensitivity for all species and pre-exponential constants in the sequence O. universa > G. aequilateralis = G. bulloides > G. ruber = G. sacculifer = other species. This approach gives an accuracy of ±1.2°C in the estimation of calcification temperature. The 9% sensitivity to temperature is similar to published studies from culture and core top calibrations, but differences exist from some literature values of pre-exponential constants. Different cleaning methodologies and artefacts of core top dissolution are probably implicated, and perhaps environmental factors yet understood. Planktonic foraminiferal Mg/Ca temperature estimates can be used for reconstructing surface temperatures and mixed and thermocline temperatures (using G. ruber pink, G. ruber white, G. sacculifer, N. dutertrei, P. obliquiloculata, etc.). The existence of a single Mg thermometry equation is valuable for extinct species, although use of species-specific equations will, where statistically significant, provide more accurate evaluation of Mg/Ca paleotemperature.
Resumo:
Analysis of contribution of micronodules of sand and silt size to chemical composition of various types of pelagic sediments, as well as use of published data indicate that in some types of bottom sediments micronodules are the principal carriers of manganese and nickel. These elements appear to constitute smaller fractions of colloidal iron and manganese hydroxides, as well as terrigenous material.
Resumo:
Glauconites and phosphates have been detected in almost all investigated samples at Sites 798 (uppermost Miocene or lower Pliocene to Pleistocene) and 799 (early middle Miocene to Pleistocene). Autochthonous occurrences appear in very minor quantities (generally below 0.2%) throughout the drilled sequences, whereas allochthonous accumulations are limited to the lower Pliocene or uppermost Miocene sequence at Site 798 (glauconites) and to the upper and middle Miocene sequence at Site 799 (upper and middle Miocene: glauconites; middle Miocene: phosphates). X-ray fluorescence, microprobe, and bulk chemical analyses indicate high variabilities in cations and anions and generally low oxide totals. This is probably related to the substitution of phosphate and fluoride aniors by hydroxide and carbonate anions in phosphates and to the depletion of iron, aluminum, and potassium cations and the enrichment in hydroxide and crystal water in glauconites. Gradients in pore-water contents of dissolved phosphate and fluoride at Sites 798 and 799 suggest a depth of phosphate precipitation between 30 and 50 mbsf, with fluoride as the limiting element for phosphate precipitation at Site 798. Phosphate and fluoride appear to be balanced at Site 799. Crude extrapolations indicate that the Japan-Sea sediments may have taken up approximately 7.2*10**10 g P total/yr during the Neogene and Pleistocene. This amount corresponds to approximately 0.3% of the estimated present-day global transfer of phosphorus into the sediments and suggests that the Japan Sea constitutes an average sink for this element. The two main carriers of phosphorus into the present Japan Sea are the Tshushima and the Liman currents, importing approximately 6.6*10**10 g P and 5.7*10**10 g P per year, respectively. Bulk chemical analyses suggest that at least 36% of P total in the sediments is organically bound phosphorus. This rather high value, which corresponds to the measured Japan-Sea deep-water P organic/P total ratios, probably reflects rapid transport of organic phosphorus into the depth of the Japan Sea.
Resumo:
High-resolution climatic records of the late Holocene along the north-west African continental margin are scarce. Here we combine sediment grain size, elemental distribution and mineral assemblage data to trace dust and riverine sources at a shallow-marine sediment depocentre in the vicinity of the Senegal River mouth. The aim is to understand how these terrigenous components reflect climate variability during the late Holocene. Major element contents were measured and mineral identification was performed on three sub-fractions of our sediment core: (i) fluvial material <2 µm, (ii) aeolian material of 18-63 µm and (iii) a sub-fraction of dual-origin material of 2-18 µm. Results show that more than 80% of the total Al and Fe terrigenous bulk content is present in the fluviogenic fraction. In contrast, Ti, K and Si cannot be considered as proxies for one specific source off Senegal. The Al/Ca ratio, recording the continental river runoff, reveals two dry periods from 3010 to 2750 cal a BP and from 1900 to 1000 cal a BP, and two main humid periods from 2750 to 1900 cal a BP and from 1000 to 700 cal a BP. The match between (i) intervals of low river runoff inferred by low Al/Ca values, (ii) reduced river discharge inferred by integrated palynological data from offshore Senegal and (iii) periods of enhanced dune reactivation in Mali confirms this interpretation.
Resumo:
Fine structure of vertical distributions of phosphorus and silicon in near-bottom layers and interstitial waters is studied in different regions of the Baltic Sea (Gulf of Finland, Bornholm area, Gotland trench). Data obtained are used to calculate fluxes of mineral forms of phosphorus and silicon in exchange processes between sediments and the near-bottom water layer. Depending on sediment types, values of nutrient fluxes vary from 9.8 to 632.6 µg-at/m**2/day for phosphorus and from 232.4 to 1881.1 µg-at/m**2/day for silicon. Fluxes calculated for different regions are compared.
Resumo:
We used a controlled CO2 perturbation experiment to test hypotheses about changes in diversity, composition and structure of soft-bottom intertidal macrobenthic assemblages, under realistic and locally relevant scenarios of seawater acidification. Patches of undisturbed sediment were collected from 2 types of intertidal sedimentary habitat in the Ria Formosa coastal lagoon (South Portugal) and exposed to 2 levels of seawater acidification (pH reduced by 0.3 and 0.6 units) and 1 unmanipulated (control) level. After 75 d the assemblages differed significantly between the 2 types of sediment and between field controls and the ex situ treatments, but not among the 3 pH levels tested. The naturally high values of total alkalinity buffered seawater from the changes imposed on carbonate chemistry and may have contributed to offsetting acidification at the local scale. Observed differences on biota were strongly related to the organic matter content and grain-size of the sediments, particularly to the fractions of medium and coarse sand. Soft-bottom intertidal macrofauna was significantly affected by the stress of being held in an artificial environment, but not by CO2-induced seawater acidification. Given the previously observed variations in the sensitivities of marine organisms to seawater acidification, direct extrapolations of the present findings to different regions or other types of assemblages do not seem advisable. However, the contribution of ex situ studies to the assessment of ecosystem-level responses to environmental disturbances could generally be improved by incorporating adequate field controls in the experimental design.
Resumo:
We present 40 Sm-Nd isotope measurements of the clay-size (<2 µm) fractions of sediments from the Southern Greenland rise (ODP-646) that span the last 365 kyr. These data track changes in the relative supply of fine particles carried into the deep Labrador Sea by the Western Boundary Under Current (WBUC) back to the fourth glacial-interglacial cycles. Earlier studies revealed three general sources of particles to the core site: (i) Precambrian crustal material from Canada, Greenland, and/or Scandinavia (North American Shield - NAS), (ii) Palaeozoic or younger crustal material from East Greenland, NW Europe, and/or western Scandinavia (Young Crust - YC) and (iii) volcanic material from Iceland and the Mid-Atlantic Ridge (MAR). Clay-size fractions from glacial sediments have the lowest Nd isotopic ratios. Supplies of young crustal particles were similar during glacial oxygen isotope stages (OIS) 2, 6, and 10. In contrast the mean volcanic contributions decreased relative to old craton material from OIS 10 to OIS 6 and then from OIS 6 to OIS 2. The glacial OIS 8 interval displays a mean Sm/Nd ratio similar to those of interglacials OIS 1, 5, and 9. Compared with other interglacials, OIS 7 was marked by a higher YC contribution but a similar ~30% MAR supply. The overall NAS contribution dropped by a factor of 2 during each glacial/interglacial transition, with the MAR contribution broadly replacing it during interglacials. To decipher between higher supplies and/or dilution, particle fluxes from each end member were estimated. Glacial NAS fluxes were systematically higher than interglacial fluxes. During the time interval examined, fine particle supplies to the Labrador Sea were strongly controlled by proximal ice-margin erosion and thus echoed the glacial stage intensity. In contrast, the WBUC-carried MAR supplies from the eastern basins did not change significantly throughout the last 365 kyr, except for a marked increase in surface-sediments that suggests unique modern conditions. Distal WBUC-controlled inputs from the Northern and NE North Atlantic seem to have been less variable than proximal supplies linked with glacial erosion rate.
Resumo:
The solvent-extractable organic fractions of sediment samples from six Ocean Drilling Program Leg 117 sites were investigated by gas chromatography and gas chromatography-mass spectrometry. Sediments deposited in the Indus Fan (Site 720) as well as Miocene sediments from the Owen Ridge (Sites 722 and 731) contain almost exclusively organic matter of terrigenous origin. The organic matter in sediments from the Oman Margin (Sites 723, 725, and 728) and in the Pliocene/Pleistocene sections from the Owen Ridge is mainly of a marine origin with variable admixtures of terrigenous material. In these latter samples strong variations of the lipid composition and distribution are noted. However, the interpretation of the relation to potential biological sources is hampered by a lack of information on the possible lipid composition of appropriate organisms.
Resumo:
The impact of CO2 leakage on solubility and distribution of trace metals in seawater and sediment has been studied in lab scale chambers. Seven metals (Al, Cr, Ni, Pb, Cd, Cu, and Zn) were investigated in membrane-filtered seawater samples, and DGT samplers were deployed in water and sediment during the experiment. During the first phase (16 days), "dissolved" (<0.2 µm) concentrations of all elements increased substantially in the water. The increase in dissolved fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb in the CO2 seepage chamber was respectively 5.1, 3.8, 4.5, 3.2, 1.4, 2.3 and 1.3 times higher than the dissolved concentrations of these metals in the control. During the second phase of the experiment (10 days) with the same sediment but replenished seawater, the dissolved fractions of Al, Cr, Cd, and Zn were partly removed from the water column in the CO2 chamber. DNi and DCu still increased but at reduced rates, while DPb increased faster than that was observed during the first phase. DGT-labile fractions (MeDGT) of all metals increased substantially during the first phase of CO2 seepage. DGT-labile fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb were respectively 7.9, 2.0, 3.6, 1.7, 2.1, 1.9 and 2.3 times higher in the CO2 chamber than that of in the control chamber. AlDGT, CrDGT, NiDGT, and PbDGT continued to increase during the second phase of the experiment. There was no change in CdDGT during the second phase, while CuDGT and ZnDGT decreased by 30% and 25%, respectively in the CO2 chamber. In the sediment pore water, DGT labile fractions of all the seven elements increased substantially in the CO2 chamber. Our results show that CO2 leakage affected the solubility, particle reactivity and transformation rates of the studied metals in sediment and at the sediment-water interface. The metal species released due to CO2 acidification may have sufficiently long residence time in the seawater to affect bioavailability and toxicity of the metals to biota.
Resumo:
Cores from the upper 70 meters below seafloor (mbsf) (upper Pleistocene) at Ocean Drilling Program (ODP) Site 645 in Baffin Bay show dramatic meter-scale changes in color and mineralogy. Below this interval, mineralogical changes are more gradual to the top of the Miocene at about 550 mbsf. The Pliocene-Pleistocene section can be divided into five facies: Facies 1 - massive, poorly sorted, gravel-bearing muds; Facies 2 - gray silty clays and silty muds; Facies 3 - laminated detricarbonate silty muds; Facies 4 - silty sand and sandy silt; and Facies 5 - poorly sorted muddy sands and silty muds. Facies 4 and 5 are restricted to the Pliocene section below depths of about 275 mbsf. The mineralogical/color cycles in the upper 70 mbsf are the result of alternations between Facies 2 and three lithotypes of Facies 1: lithotype A - tan-colored, carbonate-rich, gravel-bearing mud; lithotype B - weak, red-colored, gravel-bearing mud rich in sedimentary rock fragments; and lithotype C - gray, gravel-bearing mud. A fourth lithotype, D, is restricted to depths of 168-275 mbsf and is dark gray, carbonate-poor, gravel-bearing mud. We believe that all lithotypes of Facies 1 and the sand and gravel fractions of Facies 2 and 3 were deposited by ice rafting. Depositional processes for Facies 4 and 5 probably include ice rafting and bottom- and turbidity-current transport. Data from petrographic analyses of light and heavy sand-sized grains and X-ray analyses of silt- and clay-size fractions suggest that tan-colored sediments (lithotype A of Facies 1; Facies 3) were derived mainly from Paleozoic carbonates of Ellesmere, Devon, and northern Baffin islands. Weak red sediments (lithotype B) contain significant red sedimentary clasts, reworked quartzarenite grains and clasts, and rounded colorless garnets, all derived from Proterozoic sequences of the Borden and Thule basins, and from minor Mesozoic red beds. Other sediments in the upper 335 mbsf at Site 645 contain detritus from a heterogeneous mixture of sources, including Precambrian shield terranes around Baffin Bay. Sediments from 335 to 550 mbsf (Facies 5) are rich in friable sedimentary clasts and detrital micas and contain glauconite and, in a few samples, reworked diatoms. These components suggest derivation from poorly consolidated Mesozoic-Tertiary sediments in coastal outcrops and beneath the modern shelves of northeastern Baffin Island and western Greenland. For the upper Pleistocene section (about 0-100 mbsf), marked mineralogical cyclicity is attributed to fluctuating glacial margins, calving rates, and iceberg melting rates, particularly around the northern end of Baffin Bay. Tan-colored, carbonate-rich units were derived at times of maximum advance of glaciers on Ellesmere and Devon islands, during relatively warm intervals induced by incursion of warm Atlantic surface water into the bay. At the beginning of these warmer episodes, most icebergs were contributed by glaciers near sea level around the Arctic channels, which resulted in deposition of weak red, ice-rafted units rich in Proterozoic sedimentary clasts.
Resumo:
The book deals with behavior of phosphorus and its concentration in oceanic phosphorites. The major stages of marine geochemical cycle of phosphorus including its supply to sedimentary basins, precipitation from sea water, distribution and speciation in bottom sediments, diagenetic redistribution, and relation to other elements are under consideration. Formation of recent phosphorites as a culmination of phosphate accumulation in marine and oceanic sediments is examined. Distribution, structure, mineral and chemical compositions of major phosphorite deposits of various age on continental margins, as well as on submarine plateaus, uplifts and seamounts and some islands are described. A summary of trace element abundances in oceanic phosphorites is presented. Problems of phosphorite origin are discussed.
Resumo:
In this paper authors present and discuss data on distribution and mineral composition of suspended particulate matter (SPM) in the Franz Victoria Trough, collected during Cruise 14 of scientific icebreaker Akademik Fedorov in the northern Barents Sea in October 1998. Higher total SPM concentrations (0.4-1.8 mg/l) were measured in the near-bottom layer of the Franz Victoria Strait and central part of the trough. Potential source of mineral particles in SPM is fine fractions of Barents Sea bottom sediments. They form the nepheloid layer, which spreads on the continental slope along the trough together with Barents Sea waters at 350-400 m depth.
Resumo:
Analysis of contribution of micronodules of sand and silt size to chemical composition of various types of pelagic sediments, as well as use of published data indicate that in some types of bottom sediments micronodules are the principal carriers of manganese and nickel. These elements appear to constitute smaller fractions of colloidal iron and manganese hydroxides, as well as terrigenous material.