416 resultados para Ferromanganese crust
Resumo:
This site was accidentally spudded on a small basement pinnacle and was abandoned when hard rock was reached within a few meters from the surface. The section penetrated consisted of coarse winnowed calcareous sand over thin chalk ooze resting on a hard crust of ferromanganese oxide presumably covering basalt.
Resumo:
We have determined the concentrations and isotopic composition of noble gases in old oceanic crust and oceanic sediments and the isotopic composition of noble gases in emanations from subduction volcanoes. Comparison with the noble gas signature of the upper mantle and a simple model allow us to conclude that at least 98% of the noble gases and water in the subducted slab returns back into the atmosphere through subduction volcanism before they can be admixed into the earth's mantle. It seems that the upper mantle is inaccessible to atmospheric noble gases due to an efficient subduction barrier for volatiles.
Resumo:
The concentration of Zn, Cu, Pb, Cd, Ni, Co, Ag, Mn, Fe, Ca, Mg, K and Na in molluscs Macoma balthica, Mya arenaria, Cardium glaucum, Mytilus edulis and Astarte borealis from the southern Baltic was determined. The surface sediments and ferromanganese concretions associated with the molluscs were also analysed for concentration of these metals. Species- and region-dependent differences in the metal levels of the organisms were observed. The properties of molluscs analysed which have a tendency toward elevated biological tolerance of selected trace metals were specified. The interelement relationship between metal concentrations in the soft tissue and the shell was estimated and was discussed.
Resumo:
Considerable regional variations in the chemical composition of manganese nodules from a wide range of the Pacific Ocean have been observed. These variations can be more exactly expressed in terms of inter-element relationships. In particular, Cu-Mn and Cu-Ni associations reveal that Cu content in pelagic nodules increases rapidly in proportion to those of Mn or Ni. In nodules from continental borderland and hemipelagic areas, even if Mn or Ni contents increase, that of Cu increases only slightly. It is suggested that the considerable chemical differences within individual nodules and between nodules from the same site, at a limited pelagic area where there is no marked change in depositional conditions of nodules, are due to the role of hydrolyzable trace elements in the formation of nodules.
Resumo:
The cores and dredges described in this report were taken on the KH-68-3 Expedition in July-August, 1968 by the Ocean Research Institute, University of Tokyo from the Hakuho Maru. A total of 16 cores and dredges sites have been were.
Resumo:
The cores and dredges described in this report were taken on the KH-69-2 Expedition in April-June, 1969 by the Ocean Research Institute, University of Tokyo from the Hakuho Maru. A total of 12 cores and dredges sites have been recovered.
Resumo:
The DSDP/ODP Hole 504B, drilled in the 5.9 Ma southern flank of the Costa Rica Rift, represents the deepest section through modern ocean floor basaltic basement. The hole penetrates a 570 m thick volcanic zone, a 210 m thick transition zone of volcanic rocks and dykes, and 1056 m of dykes. A representative selection of these basalt types has been investigated with respect to Nd and Pb isotopes. The epsilonNd of the basalts varies from 7.62 to 11.16. This range in the Nd-isotope composition represents about 67% of the total range reported for Pacific MORB. The Pb-isotope composition also shows significant variation, with 206Pb/204Pb varying from 17.90 to 18.82. The isotopic data show that a small volume of enriched mantle existed in the source. The large ranges in isotopic composition in a single drill hole demonstrate the importance of small-scale mantle heterogeneities in the petrogenesis of MORB. Fractional melting and extraction of small magma batches by channelled flow, and small, short-lived crustal magma reservoirs, with limited potential for mixing of the mantle derived magmas, are favored by these isotopic data.
Resumo:
Bulk chlorine concentrations and chlorine stable isotope compositions were determined for hydrothermally altered basalt (extrusive lavas and sheeted dikes) and gabbro samples (n = 50) from seven DSDP/ODP/IODP drill sites. These altered oceanic crust (AOC) samples span a range of crustal ages, tectonic settings, alteration type, and crustal depth. Bulk chlorine concentrations range from < 0.01 wt.% to 0.09 wt.%. In general, higher chlorine concentrations coincide with an increase in temperature of alteration and amphibole content. d37Cl values of whole rock AOC samples range from -1.4 to +1.8 per mil. High d37Cl values (>=~0.5 per mil) are associated with areas of higher amphibole content. This observation is consistent with theoretical calculations that estimate amphibole should be enriched in 37Cl compared to co-existing fluid. Negative to near zero d37Cl values are found in areas dominated by clay minerals. Chlorine geochemistry is a rough indicator of metamorphic grade and mineralogy. AOC is a major Cl host in the subducting oceanic lithospheric slab. Here we show that bulk chlorine concentrations are ~3 times higher than previous estimates resulting in a greater contribution of Cl to the mantle.
Resumo:
The stratigraphic study focuses on the description of lithofacies and geological sections of secondary, tertiary and quaternary formations in different parts of western Sicily. The tectonic analysis derived from field studies is used to trace the history and effects of the Alpine orogeny on the geology of Western Sicily. During his field study the author conducted several chemical element analysis on fossil manganese nodules extracted from Jurassic limestone beds.
Resumo:
Seventeen whole-rock samples, generally taken at 25-50 m intervals from 5 to 560 m sub-basement in Hole 504B, drilled in 6.2 m.y. old crust, were analysed for 87Sr/86Sr ratios, Sr and Rb concentrations, and 18O/16O ratios. Sr isotope ratios for 8 samples from the upper 260 m of the hole range from 0.70287 to 0.70377, with a mean of 0.70320. In the 330-560 m interval, 5 samples have a restricted range of 0.70255-0.70279, with a mean of 0.70266, the average value for fresh mid-ocean ridge basalts (MORB). In the 260-330 m interval, approximately intermediate Sr isotopic ratios are found. Delta18O values (?) range from 6.4 to 7.8 in the upper 260 m, 6.2-6.4 in the 270-320 m interval, and 5.8-6.2 in the 320-560 m interval. The values in the upper 260 m are typical for basalts which have undergone low-temperature seawater alteration, whereas the values for the 320-560 m interval correspond to MORB which have experienced essentially no oxygen isotopic alteration. The higher 87Sr/86Sr and 18O/16O ratios in the upper part of the hole can be interpreted as the result of a greater overall water/rock ratio in the upper part of the Hole 504B crust than in the lower part. Interaction of basalt with seawater (87Sr/86Sr = 0.7091) increased basalt 87Sr/86Sr ratios and produced smectitic alteration products which raised whole-rock delta18O values. Seawater circulation in the lower basalts may have been partly restricted by the greater number of relatively impermeable massive lava flows below about 230 m sub-basement. These flows may have helped to seal off lower basalts from through-flowing seawater.
Resumo:
We examined small-scale shear zones in drillcore samples of abyssal peridotites from the Mid-Atlantic Ridge. These shear zones are associated with veins consisting of chlorite + actinolite/tremolite assemblages, with accessory phases zircon and apatite, and they are interpreted as altered plagiogranite melt impregnations, which originate from hydrous partial melting of gabbroic intrusion in an oceanic detachment fault. Ti-in-zircon thermometry yields temperatures around 820°C for the crystallization of the evolved melt. Reaction path modeling indicates that the alteration assemblage includes serpentine of the adjacent altered peridotites. Based on the model results, we propose that formation of chlorite occurred at higher temperatures than serpentinization, thus leading to strain localization around former plagiogranites during alteration. The detachment fault represents a major pathway for fluids through the oceanic crust, as evidenced by extremely low d18O of altered plagiogranite veins (+3.0-4.2 per mil) and adjacent serpentinites (+ 2.6-3.7 per mil). The uniform oxygen isotope data indicate that fluid flow in the detachment fault system affected veins and adjacent host serpentinites likewise.