368 resultados para CRITICAL LAYER THICKNESS
Resumo:
Compared to mid-latitude deserts, the properties, formation and evolution of desert pavements and the underlying vesicular layer in Antarctica are poorly understood. This study examines the desert pavements and the vesicular layer from seven soil chronosequences in the Transantarctic Mountains that have developed on two contrasting parent materials: sandstone-dolerite and granite-gneiss. The pavement density commonly ranges from 63 to 92% with a median value of 80% and does not vary significantly with time of exposure or parent material composition. The dominant size range of clasts decreases with time of exposure, ranging from 16-64 mm on Holocene and late Quaternary surfaces to 8-16 mm on surfaces of middle Quaternary and older age. The proportion of clasts with ventifaction increases progressively through time from 20% on drifts of Holocene and late Quaternary age to 35% on Miocene-aged drifts. Desert varnish forms rapidly, especially on dolerite clasts, with nearly 100% cover on surfaces of early Quaternary and older age. Macropitting occurs only on clasts that have been exposed since the Miocene. A pavement development index, based on predominant clast-size class, pavement density, and the proportion of clasts with ventifaction, varnish, and pits, readily differentiated pavements according to relative age. From these findings we judge that desert pavements initially form from a surficial concentration of boulders during till deposition followed by a short period of deflation and a longer period of progressive chemical and physical weathering of surface clasts. The vesicular layer that underlies the desert pavement averages 4 cm in thickness and is enriched in silt, which is contributed primarily by weathering rather than eolian deposition. A comparison is made between desert pavement properties in mid-latitude deserts and Antarctic deserts.
Resumo:
The results of oceanographic observations on board the icebreaker "Shirase" and tidal observations at Syowa Station, Antarctica, are presented in this report. The oceanographic observations were carried out by the summer party of the 37th Japanese Antarctic Research Expedition (JARE-37) during the austral summer of 1995/1996. The tidal observations were carried out by the winter party of JARE-36 from February 1995 to January 1996.
Resumo:
This study describes detailed partitioning of phytomass carbon (C) and soil organic carbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast European Russia. The mean aboveground phytomass C storage is 0.7 kg C/m**2. Estimated landscape SOC storage in the four areas varies between 34.5 and 47.0 kg C/m**2 with LCC (land cover classification) upscaling and 32.5-49.0 kg C/m**2 with soil map upscaling. A nested upscaling approach using a Landsat thematic mapper land cover classification for the surrounding region provides estimates within 5 ± 5% of the local high-resolution estimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially in the more southern study areas. Burying of SOC through cryoturbation of O- or A-horizons contributes between 1% and 16% (mean 5%) of total landscape SOC. The effect of active layer deepening and thermokarst expansion on SOC remobilization is modeled for one of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeled using a transient spatially distributed permafrost model and lateral expansion of peat plateau thermokarst lakes is simulated using geographic information system analyses. Active layer deepening is expected to increase the proportion of SOC affected by seasonal thawing from 29% to 58%. A lateral expansion of 30 m would increase the amount of SOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of this century, active layer deepening will likely affect more SOC than thermokarst expansion, but the SOC stores vulnerable to thermokarst are less decomposed.
Resumo:
The sediments collected at Sites 1150 and 1151 during Leg 186 included many tephra layers and volcaniclastic detritus. In order to identify these tephras, the major oxide compositions of individual glass shards were determined by electron probe microanalyzer. The uppermost four tephras in sediments from Hole 1150A are correlated with the Towada-Hachinohe tephra (To-H; Tohoku district), Shikotsu Daiichi (1st) tephra (Spfa-1; Hokkaido district), Narugo-Yanagisawa tephra (Nr-Y; Tohoku district), and Aso-4 tephra (Kyushu district), respectively. The uppermost tephra in Hole 1151C is correlated with To-H tephra. To-H, Spfa-1, and Aso-4 tephras are also present in piston core KH94-3, LM-8, collected between Sites 1150 and 1151. Eruptive ages of To-H and Spfa-1 estimated from the oxygen isotopic Stages of core KH94-3, LM-8 are between 14.9-15.3 and 39.5-40.1 ka.
Resumo:
During Cruise 46 of R/V Akademik Mstislav Keldysh (from June to September 2001), vertical distributions of Radiolaria (Acantharia - Bac and Euradiolaria - Beur), mesozooplankton (from 0.2 to 3.0 mm size, Bm), and chlorophyll a (Cchl) in the epipelagic zone of the North Atlantic were studied. To examine the above-listed characteristics, samples were taken by Niskin 30 l bottles from 12-16 depth levels within the upper 100 to 200 m layer in the subarctic (48°11'N, 16°06'W) and subtropical (27°31'N, 75°51'W) waters, as well as in the transitional zone (41°44'N, 49°57'W). The latter proved to be characterized by the highest values of all averaged parameters examined by us within the upper 100 m layer (Bm - 365mg/m**3, Bac - 140 mg/m**3, Beur - 0.37 mg/m**3, and Cchl - 0.32 mg/m**3). For subarctic and subtropical waters corresponding characteristics were as follows: Bm - 123 and 53 mg/m**3, Bac - 0 and 0.06 mg/m**3, Beur - 0.17 and 0.19 mg/m**3, and Cchl - 0.27 and 0.05 mg/m**3, respectively. Percentage of Acantharia in total biomass of Radiolaria and zooplankton ranged from 0 to 39%, whereas that of Euradiolaria varied from 0.01 to 0.36%. Depth levels with maximum abundance of Acantharia were located above maxima of zooplankton and chlorophyll a or coincided with them. As for Euradiolaria, vertical profiles of their biomass were more diverse as compared with Acantharia. The latter group preferred more illuminated depth levels for its maximum development (10-100% of surface irradiance, E0) with respect to Euradiolaria (1-60% of E0). Possible reasons for this difference are discussed.
Resumo:
The physical (temperature, salinity, velocity) and biogeochemical (oxygen, nitrate) structure of an oxygen depleted coherent, baroclinic, anticyclonic mode-water eddy (ACME) is investigated using high-resolution autonomous glider and ship data. A distinct core with a diameter of about 70 km is found in the eddy, extending from about 60 to 200 m depth and. The core is occupied by fresh and cold water with low oxygen and high nitrate concentrations, and bordered by local maxima in buoyancy frequency. Velocity and property gradient sections show vertical layering at the flanks and underneath the eddy characteristic for vertical propagation (to several hundred-meters depth) of near inertial internal waves (NIW) and confirmed by direct current measurements. A narrow region exists at the outer edge of the eddy where NIW can propagate downward. NIW phase speed and mean flow are of similar magnitude and critical layer formation is expected to occur. An asymmetry in the NIW pattern is seen that possible relates to the large-scale Ekman transport interacting with ACME dynamics. NIW/mean flow induced mixing occurs close to the euphotic zone/mixed layer and upward nutrient flux is expected and supported by the observations. Combing high resolution nitrate (NO3-) data with the apparent oxygen utilization (AOU) reveals AOU:NO3- ratios of 16 which are much higher than in the surrounding waters (8.1). A maximum NO3- deficit of 4 to 6 µmol kg-1 is estimated for the low oxygen core. Denitrification would be a possible explanation. This study provides evidence that the recycling of NO3-, extracted from the eddy core and replenished into the core via the particle export, may quantitatively be more important. In this case, the particulate phase is of keys importance in decoupling the nitrogen from the oxygen cycling.