326 resultados para Biogenic flux


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article will review major features of the 'giant' Cape Blanc filament off Mauritania with regard to the transport of chlorophyll and organic carbon from the shelf to the open ocean. Within the filament, chlorophyll is transported about 400 km offshore. Modelled particle distributions along a zonal transect at 21°N showed that particles with a sinking velocity of 5 m d**-1 are advected offshore by up to 600 km in subsurface particle clouds generally located between 400 m and 800 m water depth, forming an Intermediate Nepheloid Layer (INL). It corresponds to the depth of the oxygen minimum zone. Heavier particles with a sinking velocity of 30 m d**-1 are transported from the shelf within the Bottom Layer (BL) of more than 1000 m thickness, largely following the topography of the bottom slope. The particles advected within the BL contribute to the enhanced winter-spring mass fluxes collected at the open-ocean mesotrophic sediment trap site CB-13 (200 nm offshore), due to a long distance advection in deeper waters. The lateral contribution to the deep sediment trap in winter-spring is estimated to be 63% and 72% for organic carbon and total mass, respectively, whereas the lateral input for both components on an annual basis is estimated to be in the order of 15%. Biogenic opal increases almost fivefold from the upper to the lower mesotrophic CB-13 trap, also pointing to an additional source for biogenic silica from eutrophic coastal waters. Blooms obviously sink in smaller, probably mesoscale-sized patches with variable settling rates, depending on the type of aggregated particles and their ballast content. Generally, particle sinking rates are exceptionally high off NW Africa. Very high chlorophyll values and a large size of the Cape Blanc filament in 1998-1999 are also documented in enhanced total mass and organic carbon fluxes. An increasing trend in satellite chlorophyll concentrations and the size of the Cape Blanc filament between 1997 and 2008 as observed for other coastal upwelling areas is not documented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A critical question regarding the organic carbon cycle in the Arctic Ocean is whether the decline in ice extent and thickness and the associated increase in solar irradiance in the upper ocean will result in increased primary production and particulate organic carbon (POC) export. To assess spatial and temporal variability in POC export, under-ice export fluxes were measured with short-term sediment traps in the northern Laptev Sea in July-August-September 1995, north of the Fram Strait in July 1997, and in the Central Arctic in August-September 2012. Sediment traps were deployed at 2-5 m and 20-25 m under ice for periods ranging from 8.5 to 71 h. In addition to POC fluxes, total particulate matter, chlorophyll a, biogenic particulate silica, phytoplankton, and zooplankton fecal pellet fluxes were measured to evaluate the amount and composition of the material exported in the upper Arctic Ocean. Whereas elevated export fluxes observed on and near the Laptev Sea shelf were likely the combined result of high primary production, resuspension, and release of particulate matter from melting ice, low export fluxes above the central basins despite increased light availability during the record minimum ice extent of 2012 suggest that POC export was limited by nutrient supply during summer. These results suggest that the ongoing decline in ice cover affects export fluxes differently on Arctic shelves and over the deep Arctic Ocean and that POC export is likely to remain low above the central basins unless additional nutrients are supplied to surface waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A more than two-decadal sediment trap record from the Eastern Boundary Upwelling Ecosystem (EBUE) off Cape Blanc, Mauritania, is analysed with respect to deep ocean mass fluxes, flux components and their variability on seasonal to decadal timescales. The total mass flux revealed interannual fluctuations which were superimposed by fluctuations on decadal timescales. High winter fluxes of biogenic silica (BSi), used as a measure of marine production (mostly by diatoms) largely correspond to a positive North Atlantic Oscillation (NAO) index (December-March). However, this relationship is weak. The highest positive BSi anomaly was in winter 2004-2005 when the NAO was in a neutral state. More episodic BSi sedimentation events occurred in several summer seasons between 2001 and 2005, when the previous winter NAO was neutral or even negative. We suggest that distinct dust outbreaks and deposition in the surface ocean in winter and occasionally in summer/autumn enhanced particle sedimentation and carbon export on short timescales via the ballasting effect. Episodic perturbations of the marine carbon cycle by dust outbreaks (e.g. in 2005) might have weakened the relationships between fluxes and large-scale climatic oscillations. As phytoplankton biomass is high throughout the year, any dry (in winter) or wet (in summer) deposition of fine-grained dust particles is assumed to enhance the efficiency of the biological pump by incorporating dust into dense and fast settling organic-rich aggregates. A good correspondence between BSi and dust fluxes was observed for the dusty year 2005, following a period of rather dry conditions in the Sahara/Sahel region. Large changes of all bulk fluxes occurred during the strongest El Niño-Southern Oscillation (ENSO) in 1997-1999 where low fluxes were obtained for almost 1 year during the warm El Niño and high fluxes in the following cold La Niña phase. For decadal timescales, Bakun (1990) suggested an intensification of coastal upwelling due to increased winds (''Bakun upwelling intensification hypothesis''; Cropper et al., 2014) and global climate change. We did not observe an increase of any flux component off Cape Blanc during the past 2 and a half decades which might support this. Furthermore, fluxes of mineral dust did not show any positive or negative trends over time which might suggest enhanced desertification or ''Saharan greening'' during the last few decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a reliable simulation of the time and space dependent CO2 redistribution between ocean and atmosphere an appropriate time dependent simulation of particle dynamics processes is essential but has not been carried out so far. The major difficulties were the lack of suitable modules for particle dynamics and early diagenesis (in order to close the carbon and nutrient budget) in ocean general circulation models, and the lack of an understanding of biogeochemical processes, such as the partial dissolution of calcareous particles in oversaturated water. The main target of ORFOIS was to fill in this gap in our knowledge and prediction capability infrastructure. This goal has been achieved step by step. At first comprehensive data bases (already existing data) of observations of relevance for the three major types of biogenic particles, organic carbon (POC), calcium carbonate (CaCO3), and biogenic silica (BSi or opal), as well as for refractory particles of terrestrial origin were collated and made publicly available.