363 resultados para Aisberg-2-NDM-14-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The carbon isotope composition (d13C) of bulk organic matter and two palynomorph groups (scolecodonts and chitinozoans) from the Llandovery-Wenlock strata of Gotland (E Sweden) are compared to gain knowledge about carbon cycling in the Silurian (sub)tropical shelf environment. The d13C values of the palynomorphs are mostly lower than the d13C values of the bulk organic matter, and the d13C values of the benthic scolecodonts are lower than those of the planktonic chitinozoans. While the difference between bulk and palynomorph d13C may be in part a function of trophic state, the lower values of the scolecodonts relative to those of chitinozoans, which are assumed to live in the well-mixed water column, might imply an infaunal mode of life for the polychaetes that carried the scolecodonts. Lower d13C for the scolecodonts in the middle of the section may represent variations in primary marine productivity (supported by acritarch abundance data), oxidation of organic matter in the bottom waters, or genera effects. In general, however, trends between the three data sets are parallel, indicating similarities in the low frequency, environmentally forced controls. The d13C data show a decreasing trend from the base of the section, up to a horizon well below the base of the Upper Visby Formation. At this level, and therefore probably several 10 kyr before the d13C increase in the carbonates, the d13C organic values increase by ~1 per mil. This perhaps is an expression of a changed composition of the bulk organic matter associated with the extinction events prior to the Llandovery-Wenlock boundary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition from last glacial to deglacial and subsequently to modern interglacial climate conditions was accompanied by abrupt shifts in the palaeoceanographic setting in the subpolar North Atlantic. Knowledge about the role that sea ice coverage played during these rapid climate reversals is limited since most marine sediment cores from the higher latitudes provide only a coarse temporal resolution and often poorly preserved microfossils. Here we present a highly resolved reconstruction of sea ice conditions that characterised the eastern Fram Strait - a key area for water mass exchange between the Arctic Ocean and the North Atlantic - for the past 30 ka BP. This reconstruction is based on the distribution of the sea ice biomarker IP25 and phytoplankton derived biomarkers in a sediment core from the continental slope of western Svalbard. During the late glacial (30 ka to 19 ka BP), recurrent advances and retreats of sea ice characterised the study area and point to a hitherto less considered oceanic (and/or atmospheric) variability. A long-lasting perennial sea ice coverage in eastern Fram Strait persisted only at the very end of the Last Glacial Maximum (i.e. from 19.2 to 17.6 ka BP) and was abruptly reduced at the onset of Heinrich Event 1 - coincident with or possibly even inducing the collapse of the Atlantic Meridional Overturning Circulation (AMOC). Further maximum sea ice conditions prevailed during the Younger Dryas cooling event and support the assumption of an AMOC reduction due to increased formation and export of Arctic sea ice through Fram Strait. A significant retreat of sea ice and sea surface warming are observed for the Early Holocene.

Relevância:

100.00% 100.00%

Publicador: