306 resultados para 69-504A


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compositions of chrome spinels of Costa Rica Rift basalts from Deep Sea Drilling Project Site 505 vary depending on their occurrences as (1) inclusions in olivine crystals, (2) inclusions in Plagioclase crystals, and (3) isolated crystals in variolitic or glassy samples. The variations are a consequence of (1) changes of melt compositions as crystallization proceeds, and (2) contrasting behavior of olivine and Plagioclase in competition with spinels for Al and Mg. Some spinels have skeletal rims compositionally less magnesian than mineral cores; however, the cores do not appear to be xenocrysts, unlike some texturally similar spinels in Mid-Atlantic Ridge basalts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paleomagnetic and rock magnetic measurements of basalt specimens from DSDP Hole 504B, associated with the Costa Rica Rift, have a mean natural remanence intensity (Jn) between 5 and 10 x 10**-3 gauss, consistent with the presence of a magnetized layer that is 0.5 to 1 km thick, which produces the observed magnetic anomalies. A mean Koenigsberger ratio (Qn) greater than 10 indicates that the remanence dominates the magnetic signal of the drilled section. The susceptibility (x) increases with depth, and the median demagnetizing field (MDF) decreases with increasing depth in Hole 504B, congruent with the downhole increase in the relative abundance of massive flow units. Hole 504B is composed of at least 12 units with distinct stable average inclinations (Is), which probably represent extrusion at times of different geomagnetic field directions and possibly also the effects of faulting. The thickness of basalt associated with these inclination units varies from less than 9 meters to possibly as much as 160 meters. Two relatively thick magnetic units (40 m and 45 m, separated by 100 m) have anomalously high Is values of -53° and -63°, in contrast with the near zero inclinations expected for the equatorial latitude of Site 504. For this reason and because the average inclination of all the magnetic units is skewed to a negative value, it might be that the entire section at Hole 504B was tilted by approximately 30°.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mössbauer analyses were conducted on a sample of saponite selected from DSDP Leg 69 basalt core. The sample was initially placed within a nitrogen-purged container on-board Glomar Challenger approximately three hours after recovery, where it remained until analysis. The Mössbauer data revealed an original, in situ Fe2O3/FeO ratio of 0.46, with both Fe**2+ and Fe**3+ in octahedral coordination. With controlled exposure to air under ambient laboratory storage conditions, the proportion of Fe**3+ increased from an original 30% to 51% over a period of about 11.5 months. The Fe**3+ thus produced remained in octahedral coordination, and no observable changes occurred in the physical appearance of the sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional K-Ar ages have been determined and inert-gas abundances have been measured on representative samples of altered rocks from Deep Sea Drilling Project Holes 501, 504B, and 505B in an attempt to correlate their degree of alteration with inert-gas and K-Ar data. Samples taken from the first 60 meters below the sediment/basalt interface give significantly higher ages than would be expected from the magnetic stratigraphy, though at greater depths the calculated ages are in broad agreement with the expected age. The inert gas ratios 20Ne/36Ar, 36Ar/84Kr, and 84Kr/130Xe also show a marked discontinuity at the 60-meter depth, and all these effects are interpreted as being a consequence of low-temperature alteration produced by burial metamorphism and by interaction with sea water (halmyrolysis).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressional- and shear-wave velocity logs (Vp and Vs, respectively) that were run to a sub-basement depth of 1013 m (1287.5 m sub-bottom) in Hole 504B suggest the presence of Layer 2A and document the presence of layers 2B and 2C on the Costa Rica Rift. Layer 2A extends from the mudline to 225 m sub-basement and is characterized by compressional-wave velocities of 4.0 km/s or less. Layer 2B extends from 225 to 900 m and may be divided into two intervals: an upper level from 225 to 600 m in which Vp decreases slowly from 5.0 to 4.8 km/s and a lower level from 600 to about 900 m in which Vp increases slowly to 6.0 km/s. In Layer 2C, which was logged for about 100 m to a depth of 1 km, Vp and Vs appear to be constant at 6.0 and 3.2 km/s, respectively. This velocity structure is consistent with, but more detailed than the structure determined by the oblique seismic experiment in the same hole. Since laboratory measurements of the compressional- and shear-wave velocity of samples from Hole 504B at Pconfining = Pdifferential average 6.0 and 3.2 km/s respectively, and show only slight increases with depth, we conclude that the velocity structure of Layer 2 is controlled almost entirely by variations in porosity and that the crack porosity of Layer 2C approaches zero. A comparison between the compressional-wave velocities determined by logging and the formation porosities calculated from the results of the large-scale resistivity experiment using Archie's Law suggest that the velocity- porosity relation derived by Hyndman et al. (1984) for laboratory samples serves as an upper bound for Vp, and the noninteractive relation derived by Toksöz et al. (1976) for cracks with an aspect ratio a = 1/32 serves as a lower bound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A University of Hawaii oceanographic cruise, Abyssal Hills 69, with the R/V Mahi, was carried out to study the association of manganese nodules with an abyssal hill. Manganese nodules from three dredge hauls on an abyssal hill located at 36°W and 157°W exhibited differences in morphology and composition between stations only three miles apart. The morphology of the nodules suggests that nodules from a single site have similar morphologies because they began growth at the same time, probably because of a volcanic event. Differences in morphology between stations indicate a local supply of elements. Atomic absorption analysis for manganese, iron, cobalt, nickel, and copper revealed that nodules nearest to a probable fault line and source of volcanism have a, lower manganese to iron ratio than nodules farther removed. This finding supports the theory that volcanism contributes to the formation of some nodules. Additional evidence showing association with volcanism consists of volcanic nuclei in nodules, crusts formed on layers of volcanic ash, and basalt encrusted to various degrees. The variation in cobalt, nickel, and copper contents Gt the nodules from a single dredge is two-to threefold, but iron content is more uniiorm. Four of the six cores from the area increased in manganese concentration with depth, suggesting that diffusion is concentrating manganese in the upper zone of the sediments or in nodules. The author concludes that volcanism is contributing to the formation of nodules by supplying nuclei and transition elements, but is not necessary for the formation of manganese nodules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basalt formation waters collected from Hole 504B at sub-basement depths of 194, 201, 365, and 440 meters show inverse linear relationships between 87Sr/86Sr and Ca, 87Sr/86Sr and Sr, and K and Ca. If the Ca content of a fully reacted formation water end-member is assumed to be 1340 ppm, the K, Sr, and 87Sr/86Sr values for the end-member are 334 ppm, 7.67 ppm, and 0.70836, respectively. With respect to contemporary seawater at Hole 504B, K is depleted by 13%, Sr is enriched by 2.7%, and 87Sr/86Sr is depleted by 0.8%. The Sr/Ca ratio of the formation water (0.0057) is much lower than that of seawater (0.018) but is similar to the submarine hot spring waters from the Galapagos Rift and East Pacific Rise and to geothermal brines from Iceland. At the intermediate temperatures represented by the Hole 504B formation waters (70°-105°C), the interaction between seawater and the ocean crust produces large solution enrichments in Ca, the addition of a significant basalt Sr isotope component accompanied by only a minor elemental Sr component, and the removal from solution of seawater K. The Rb, Cs, and Ba contents of the formation waters appear to be affected by contamination, possibly from drilling muds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of U concentration and 234U/238U ratio were made in five water samples from Deep Sea Drilling Project Hole 504B.The results indicate that a loss of U had occurred either during sampling or during the storage of the samples, probably as a result of adsorption by rust particles or by the walls of the sampling system. Within analytical uncertainty, the 234U/238U ratios in the samples were identical to those in unreacted seawater. Thus, it is not possible to detect any U exchange that may have occurred during the reaction of the solutions with the basement formation. Improvement in sampling technique is a necessity for future studies of uranium and probably other trace elements in drill hole water samples.