45 resultados para urine specific gravity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

During Leg 75 of the Deep Sea Drilling Project (DSDP) from the D/V Glomar Challenger, a 200-m deep hole was drilled at Hole 532A on the eastern side of Walvis Ridge at a water depth of 1331 m. Sediment cores were obtained by means of a hydraulic piston corer. All of the cores from this boring were designated for geotechnical studies and were distributed among eight institutions. The results of laboratory studies on these sediment cores were compiled and analyzed. Sediment properties, including physical characteristics, strength, consolidation, and permeability were studied to evaluate changes as a function of depth of burial. It was concluded that the sediment profile to the explored depth of 200 m at Walvis Ridge consists of approximately 50 m of foram-nannofossil marl (Subunit 1a) over 64 m of diatom-nannofossil marl (Subunit 1b) over nannofossil marl (Subunit 1c) to the depth explored. All three sediment units appear to be normally consolidated, although some anomalies seem to exist to a depth of 120 m. No distinct differences were found among the sediment properties of the three subunits (1a, 1b, and 1c) identified at this site.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drilling during Leg 167 at the California margin was scheduled to recover continuous sedimentary sections. Multiple advanced piston core (APC) holes drilled at different depth offsets provided core overlap in successive APCs. Correlation of high-resolution laboratory physical properties data from adjacent APC holes was used to compile composite depth sections for each site. The composite depth sections were used to confirm continuous recovery and enable high-resolution sampling. The meters composite depth (mcd) scale differs from the shipboard meters below seafloor (mbsf) scale because of (1) core expansion following recovery (MacKillop et al., 1995, doi:10.2973/odp.proc.sr.138.118.1995), (2) coring gaps, and (3) stretching/compression of sediment during coring (Lyle, Koizumi, Richter, et al., 1997, doi:10.2973/odp.proc.ir.167.1997). Moran (1997, doi:10.2973/odp.proc.sr.154.132.1997) calculated that sediment expansion accounted for 90%-95% of the Leg 154 depth offset between shipboard mbsf and the mcd scales. Terzaghi's one-dimensional theory of consolidation (Terzaghi, 1943) describes the response of sediments to stress loading and release. Mechanical loading in marine environments is provided by the buoyant weight of the overlying sediments. The load increases with depth below seabed, resulting in sediment volume reduction as water is "squeezed" out of the voids in the sediment. Stress release during core recovery results in expansion of the sediment and volume increase as water returns to the sediment. The sediment expansion or rebound defines the elastic properties of the sediment. In this study we examine the elastic deformation properties of sediments recovered from Sites 1020 and 1021. These results are used to (1) correct the laboratory index properties measurements to in situ values and (2) determine the contribution of sediment rebound to the depth offset between the mbsf and mcd scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heavy or high-specific gravity minerals make up a small but diagnostic component of sediment that is well suited for determining the provenance and distribution of sediment transported through estuarine and coastal systems worldwide. By this means, we see that surficial sand-sized sediment in the San Francisco Bay Coastal System comes primarily from the Sierra Nevada and associated terranes by way of the Sacramento and San Joaquin Rivers and is transported with little dilution through the San Francisco Bay and out the Golden Gate. Heavy minerals document a slight change from the strictly Sierran-Sacramento mineralogy at the confluence of the two rivers to a composition that includes minor amounts of chert and other Franciscan Complex components west of Carquinez Strait. Between Carquinez Strait and the San Francisco Bar, Sierran sediment is intermingled with Franciscan-modified Sierran sediment. The latter continues out the Gate and turns southward towards beaches of the San Francisco Peninsula. The Sierran sediment also fans out from the San Francisco Bar to merge with a Sierran province on the shelf in the Gulf of the Farallones. Beach-sand sized sediment from the Russian River is transported southward to Point Reyes where it spreads out to define a Franciscan sediment province on the shelf, but does not continue southward to contribute to the sediment in the Golden Gate area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Climatological Database for the World's Oceans: 1750-1854 (CLIWOC) project, which concluded in 2004, abstracted more than 280,000 daily weather observations from ships' logbooks from British, Dutch, French, and Spanish naval vessels engaged in imperial business in the eighteenth and nineteenth centuries. These data, now compiled into a database, provide valuable information for the reconstruction of oceanic wind field patterns for this key period that precedes the time in which anthropogenic influences on climate became evident. These reconstructions, in turn, provide evidence for such phenomena as the El Niño-Southern Oscillation and the North Atlantic Oscillation. Of equal importance is the finding that the CLIWOC database the first coordinated attempt to harness the scientific potential of this resource represents less than 10 percent of the volume of data currently known to reside in this important but hitherto neglected source.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the green Oligocene clay of Krizanovice (former Krzyzanowicz) the author found numerous black nodules. In the 3-4 centimeter thick black crust of a particular specimen the concentration in MnO2 is evaluated at 46.6% MnO2. The determination was done using the Volhard's method (precipitation of Fe by ZnO and titration with KMnO4). Only the dissoleved part in HCL was analysed. The non soluble residue was essentially a silica precipitate in the form of many gray flakes. The specific gravity of the crust was evaluated at 3.8. In the internal yellow core the amount of manganese is about 2.39% MnO2. Due to the light color it is judged to probably be in the form of Mn2O3.