105 resultados para upper lower solutions


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Profiles of Mo/total organic carbon (TOC) through the Lower Toarcian black shales of the Cleveland Basin, Yorkshire, United Kingdom, and the Posidonia shale of Germany and Switzerland reveal water mass restriction during the interval from late tenuicostatum Zone times to early bifrons Zone times, times which include that of the putative Early Toarcian oceanic anoxic event. The degree of restriction is revealed by crossplots of Mo and TOC concentrations for the Cleveland Basin, which define two linear arrays with regression slopes (ppm/%) of 0.5 and 17. The slope of 0.5 applies to sediment from the upper semicelatum and exaratum Subzones. This value, which is one tenth of that for modern sediments from the Black Sea (Mo/TOC regression slope 4.5), reveals that water mass restriction during this interval was around 10 times more severe than in the modern Black Sea; the renewal frequency of the water mass was between 4 and 40 ka. The Mo/TOC regression slope of 17 applies to the overlying falciferum and commune subzones: the value shows that restriction in this interval was less severe and that the renewal frequency of the water mass was between 10 and 130 years. The more restricted of the two intervals has been termed the Early Toarcian oceanic anoxic event but is shown to be an event caused by basin restriction local to NW Europe. Crossplots of Re, Os, and Mo against TOC show similar trends of increasing element concentration with increase in TOC but with differing slopes. Together with modeling of 187Os/188Os and d98Mo, the element/TOC trends show that drawdown of Re, Os, and Mo was essentially complete during upper semicelatum and exaratum Subzone times (Mo/TOC regression slope of 0.5). Drawdown sensitized the restricted water mass to isotopic change forced by freshwater mixing so that continental inputs of Re, Os, and Mo, via a low-salinity surface layer, created isotopic excursions of up to 1.3 per mil in d98Mo and up to 0.6 per mil for 187Os/188Os. Restriction thereby compromises attempts to date Toarcian black shales, and possibly all black shales, using Re-Os chronology and introduces a confounding influence in the attempts to use d98Mo and initial 187Os/188Os for palaeo-oceanographic interpretation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dates and growth rates of iron-manganese nodules obtained by various direct and indirect methods, including radiometric, micropaleontological, geological and experimental, are discussed. Validity of assumptions, on which the radiometric dating of nodules is based and reliability of results are discussed. The problem of "buoyancy" of slow-growing nodules resting on the surface of faster-accumulating sediments is considered: It may be caused by action of deep-water fauna, bottom currents, or plastic properties of sediments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on sedimentological and geochemical data, the Upper Cretaceous and Tertiary sequence at Ocean Drilling Program Site 661 was subdivided into four intervals: Interval I (Campanian age) is characterized by sediments deposited below the calcite compensation depth (CCD) inside a high-productivity area and well-oxygenated bottom waters, indicated by the absence of carbonate, the major occurrence of zeolites and opal-CT, and intense bioturbation. Very fine-grained siliciclastic sediments and the lack of any erosional features suggest a low-energy environment. The terrigenous fraction was probably supplied by winds from the nontropical areas in South Africa. Interval II (Maestrichtian age) is characterized by high-amplitude variations in the carbonate content indicative of a deposition above the CCD, superimposed by (climate-controlled) short-term fluctuations of the CCD. The absence of both zeolites and opal-CT imply a position of Site 661 outside high-productivity areas. The first occurrence of higher amounts of kaolinite (especially during the middle Maestrichtian) suggests the onset of a terrigenous sediment supply from tropical areas. Interval III (between uppermost Cretaceous to early Tertiary) is characterized by the absence of carbonate and zeolites, interpreted as deposition below the CCD and outside an oceanic high-productivity belt. The kaolinite-over-illite dominance suggests a terrigenous sediment supply from tropical areas. Interval IV (between early Tertiary and Miocene age) is characterized by the occurrence of black manganeserich layers, major nodules/pebbles, and erosional surfaces, indicating phases of extremely reduced sediment accumulation and bottom-current activities. In the lower part of this interval (?Eocene age), higher amounts of zeolites occur, which suggest a higher oceanic productivity caused by equatorial upwelling. The source area of the terrigenous sediment fraction at Site 661 was the tropical region of northwest Africa, as suggested by the kaolinite-over-illite dominance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chert, Porcellanite, and other silicified rocks formed in response to high heat flow in the lower 50 meters of 275 meters of sediments at Deep Sea Drilling Project Site 504, Costa Rica Rift. Chert and Porcellanite partly or completely replaced upper Miocene chalk and limestone. Silicified rock occurs as nodules, laminae, stringers, and casts of burrows, and consists of quartz and opal-CT in varying amounts, associated with secondary calcite. The secondary silica was derived from dissolution of opal-A (biogenic silica), mostly diatom frustules and radiolarian tests. Temperature data obtained at the site indicate that transformation of opal-A to opal-CT began at about 50°C, and transformation from opal-CT to quartz at about 55°C. Quartz is most abundant close to basement basalts. These silica transformations occurred over the past 1 m.y., and took place so rapidly that there was incomplete ordering of opal-CT before transformation to quartz; opal-CT formed initially with an uncommonly wide d spacing. Quartz shows poor crystallinity. Chemical data show that the extensively silicified rocks consist of over 96% SiO2; in these rocks, minor and trace elements decreased greatly, except for boron, which increased. Low Al2O3 and TiO2 contents in all studied rocks preclude the presence of significant volcanic or terrigenous detritus. Mn content increases with depth, perhaps reflecting contributions from basalts or hydrothermal solutions. Comparisons with cherts from oceanic plateaus in the central Pacific point to a more purely biogenic host sediment for the Costa Rica Rift cherts, more rapid precipitation of quartz, and formation nearer a spreading center. Despite being closer to continental sources of ash and terrigenous detritus, Costa Rica Rift cherts have lower Al2O3, Fe2O3, and Mn concentrations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calcareous nannoplankton, palynomorph, benthic foraminifera, and oxygen isotope records from the supraregionally distributed Niveau Paquier (Early Albian age, Oceanic Anoxic Event 1b) and regionally distributed Niveau Kilian (Late Aptian age) black shales in the Vocontian Basin (SE France) exhibit variations that reflect paleoclimatic and paleoceanographic changes in the mid-Cretaceous low latitudes. To quantify surface water productivity and temperature changes, nutrient and temperature indices based on calcareous nannofossils were developed. The nutrient index strongly varies in the precessional band, whereas variations of the temperature index reflect eccentricity. Since polar ice caps were not present during the mid-Cretaceous, these variations probably result from feedback mechanisms within a monsoonal climate system of the mid-Cretaceous low latitudes involving warm/humid and cool/dry cycles. A model is proposed that explains the formation of mid-Cretaceous black shales through monsoonally driven changes in temperature and evaporation/precipitation patterns. The Lower Albian Niveau Paquier, which has a supraregional distribution, formed under extremely warm and humid conditions when monsoonal intensity was strongest. Bottom water ventilation in the Vocontian Basin was diminished, probably due to increased precipitation and reduced evaporation in regions of deep water formation at low latitudes. Surface water productivity in the Vocontian Basin was controlled by the strength of monsoonal winds. The Upper Aptian Niveau Kilian, which has a regional distribution only, formed under a less warm and humid climate than the Niveau Paquier. Low-latitude deep water formation was reduced to a lesser extent and/or on regional scale only. The threshold for the formation of a supraregional black shale was not reached. The intensity of increases in temperature and humidity controlled whether black shales developed on a regional or supraregional scale. At least in the Vocontian Basin, the increased preservation of organic matter at the sea floor was more significant in black shale formation than the role of enhanced productivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lower Campanian to middle Eocene chalks and oozes were recovered at Sites 761 and 762 of Ocean Drilling Program Leg 122 on the Exmouth Plateau, northwest Australia. Paleomagnetic analyses were made on 125 samples from Hole 761B and 367 samples from Hole 762C. Thermal cleaning, alternating field demagnetization, or mixed treatment reveals a stable remanent component of normal or reversed polarity. Correlation of the magnetic polarity sequences established for these holes with the standard magnetic polarity time scale was aided by nannofossil zonation. At Hole 761B, the sequence extends from Subchron C32-N (upper Campanian) through Subchron C17-R (middle Eocene), but given the low sedimentation rate, not all the subchrons of the standard magnetic polarity sequence were recognized. The sequence at Hole 762C extends from Subchron C13-R (middle Eocene) to the boundary between Chrons C33 and C34 (lower Campanian). The sedimentation rate is higher at Hole 762C, and all the magnetic polarity subchrons of the Campanian and Maestrichtian stages were identified. Thus, this hole could be a reference section to refine the Upper Cretaceous time scale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The age of the subducting Nazca Plate off Chile increases northwards from 0 Ma at the Chile Triple Junction (46°S) to 37 Ma at the latitude of Valparaíso (32°S). Age-related variations in the thermal state of the subducting plate impact on (a) the water influx to the subduction zone, as well as on (b) the volumes of water that are released under the continental forearc or, alternatively, carried beyond the arc. Southern Central Chile is an ideal setting to study this effect, because other factors for the subduction zone water budget appear constant. We determine the water influx by calculating the crustal water uptake and by modeling the upper mantle serpentinization at the outer rise of the Chile Trench. The water release under forearc and arc is determined by coupling FEM thermal models of the subducting plate with stability fields of water-releasing mineral reactions for upper and lower crust and hydrated mantle. Results show that both the influx of water stored in, and the outflux of water released from upper crust, lower crust and mantle vary drastically over segment boundaries. In particular, the oldest and coldest segments carry roughly twice as much water into the subduction zone as the youngest and hottest segments, but their release flux to the forearc is only about one fourth of the latter. This high variability over a subduction zone of < 1500 km length shows that it is insufficient to consider subduction zones as uniform entities in global estimates of subduction zone fluxes. This article is protected by copyright. All rights reserved.