162 resultados para tropical marine fishery


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The data have been extracted and compiled from various sources but mainly from the ICES data base. The ICES data are from catch databases downloaded from the ICES website on 2014-01-14. These data are resolved by ICES area, country and year. During inspection of these data, it was noted that Norwegian data for years before 1950 had not been entered into the catch database on the ICES website. ICES has been notified of this omission by B. R. MacKenzie. The Norwegian data from ICES Bulletins. Statistiques has been added. Additional historical bluefin tuna catch data from other fishery reports and sources have been included in the data file for years preceding those when countries started reported their landings officially to ICES. These additional data have been reported in the literature previously (MacKenzie and Myers 2007, Fisheries Research).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seagrass meadows are a crucial component of tropical marine reef ecosystems. The seagrass plants are colonized by a multitude of epiphytic organisms that contribute to determining the ecological role of seagrasses. To better understand how environmental changes like ocean acidification might affect epiphytic assemblages, the microbial community composition of the epiphytic biofilm of Enhalus acroides was investigated at a natural CO2 vent in Papua New Guinea using molecular fingerprinting and next generation sequencing of 16S and 18S rRNA genes. Both bacterial and eukaryotic epiphytes formed distinct communities at the CO2-impacted site compared to the control site. This site-related CO2 effect was also visible in the succession pattern of microbial epiphytes. We further found an increased abundance of bacterial types associated with coral diseases at the CO2-impacted site (Fusobacteria, Thalassomonas) whereas eukaryotes such as certain crustose coralline algae commonly related to healthy reefs were less diverse. These trends in the epiphytic community of E. acroides suggest a potential role of seagrasses as vectors of coral pathogens and may support previous predictions of a decrease in reef health and prevalence of diseases under future ocean acidification scenarios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tayrona National Natural Park (TNNP; 11°17' - 11°22' N and 73°53' - 74°12' W) is a hotspot of coral reef biodiversity in the Colombian Caribbean, located between the city of Santa Marta (>455,000 inhabitants) and several smaller river mouths (Rio Piedras, Mendihuaca, Guachaca). The region experiences a strong seasonal variation in physical parameters (temperature, salinity, wind, and water currents) due to alternating dry seasons with coastal upwelling and rainy seasons. Here, a range of water quality parameters relevant for coral reef functioning is provided. Water quality was measured directly above local coral reefs (~10 m water depth) by a monthly monitoring for up to 25 months in the four TNNP bays (Chengue, Gayraca, Neguanje, and Cinto) and at sites with different degree of exposition to winds, waves and water currents (exposed vs. sheltered sites) within each bay. The water quality parameters include: inorganic nutrient (nitrate, nitrite and soluble reactive phosphorus), chlorophyll a, particulate organic carbon and nitrogen concentrations (with a replication of n=3) as well as oxygen availability, biological oxygen demand, seawater pH, and water clarity (with a replication of n=4). This is by far the most comprehensive coral reefs water quality dataset for the region. A detailed description of the methods can be found within the referenced publications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Golfe d'Arguin offshore of northern Mauritania hosts a rare modern analogue for heterozoan carbonate production in a tropical marine setting. Dominated by ocean upwelling and with additional fertilisation by iron-rich aeolian dust, this naturally eutrophic marine environment lacks typical photozoan communities. A highly productive, tropical cosmopolitan biota dominated by molluscs and suspension-feeders such as bryozoans and balanids characterises the carbonate-rich surface sediments. Overall biodiversity is relatively low and the species present are tolerant against the eutrophic and low-light conditions, the strong hydrodynamic regime governed by ocean upwelling, and the unstable, soft-bottom seafloor with few hard substrata. Here, we describe an ectosymbiosis between the hermit crab Pseudopagurus granulimanus (Miers, 1881) and monospecific assemblages of the encrusting cheilostome bryozoan Acanthodesia commensale (Kirkpatrick and Metzelaar, 1922) that cohabits vacant gastropod shells. Nucleating on an empty gastropod shell, the bryozoan colonies form multilamellar skeletal crusts that produce spherical encrustations and extend the living chamber of the hermit crab through helicospiral tubular growth. This non-obligate mutualistic symbiosis illustrates the adaptive capabilities and benefits from a close partnership in a complex marine environment, driven by trophic conditions, high water energies and instable substratum. Sectioned bryoliths show that between 49 and 97 % of the solid volume of the specimens consists of bryozoan skeleton.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, we demonstrate the utility of amino acid geochronology based on single-foraminiferal tests in Quaternary sediment cores from the Queensland margin, Australia. The large planktonic foraminifer Pulleniatina obliquiloculata is ubiquitous in shelf, slope, and basin sediments of north Queensland as well as pantropical oceans. Fossil tests are resistant to dissolution, and retain substantial concentrations of amino acids (2-4 nmol/mg of shell) over hundreds of thousands of years. Amino acid D and L isomers of aspartic acid (Asp) and glutamic acid (Glu) were separated using reverse phase chromatography, which is sensitive enough to analyze individual foraminifera tests. In all, 462 Pulleniatina tests from 80 horizons in 11 cores exhibit a systematic increase in D/L ratios down core. D/L ratios were determined in 32 samples whose ages are known from AMS 14C analyses. In all cases, the Asp and Glu D/L ratios are concordant with 14C age. D/L ratios of equal-age samples are slightly lower for cores taken from deeper water sites, reflecting the sensitivity of the rate of racemization to bottom water temperature. Beyond the range of 14C dating, previously identified marine oxygen-isotope stage boundaries provide approximate ages of the sediments up to about 500,000 years. For this longer time frame, D/L ratios also vary systematically with isotope-correlated ages. The rate of racemization for Glu and Asp was modeled using power functions. These equations can be used to estimate ages of samples from the Queensland margin extending back at least 500,000 years. This analytical approach provides new opportunities for geochronological control necessary to understand fundamental sedimentary processes affecting a wide range of marine environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent-past shoreline changes on reef islands are now subject to intensified monitoring via remote sensing data. Based on these data, rates of shoreline change calculated from long-term measurements (decadal) are often markedly lower than recent short-term rates (over a number of years). This observation has raised speculations about the growing influence of sea-level rise on reef island stability. This observation, however, can also be explained if we consider two basic principles of geomorphology and sedimentology. For Takú Atoll, Papua New Guinea, we show that natural shoreline fluctuations of dynamic reef islands have a crucial influence on the calculation of short-term rates of change. We analyze an extensive dataset of multitemporal shoreline change rates from 1943 to 2012 and find that differing rates between long- and short-term measurements consistently reflect the length of the observation interval. This relationship appears independent from the study era and indicates that reef islands were equally dynamic during the early periods of analysis, i.e. before the recent acceleration of sea-level rise. Consequently, we suggest that high rates of shoreline change calculated from recent short-term observations may simply result from a change in temporal scale and a shift from geomorphic equilibrium achieved over cyclic time towards an apparent disequilibrium during shorter periods of graded time. This new interpretation of short- and long-term shoreline change rates has important implications for the ongoing discussion about reef island vulnerability, showing that an observed jump from low to high rates of change may be independent from external influences, including but not limited to sea-level rise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atoll islands are subject to a variety of processes that influence their geomorphological development. Analysis of historical shoreline changes using remotely sensed images has become an efficient approach to both quantify past changes and estimate future island response. However, the detection of long-term changes in beach width is challenging mainly for two reasons: first, data availability is limited for many remote Pacific islands. Second, beach environments are highly dynamic and strongly influenced by seasonal or episodic shoreline oscillations. Consequently, remote-sensing studies on beach morphodynamics of atoll islands deal with dynamic features covered by a low sampling frequency. Here we present a study of beach dynamics for nine islands on Takú Atoll, Papua New Guinea, over a seven-decade period. A considerable chronological gap between aerial photographs and satellite images was addressed by applying a new method that reweighted positions of the beach limit by identifying "outlier" shoreline positions. On top of natural beach variability observed along the reweighted beach sections, we found that one third of the analyzed islands show a statistically significant decrease in reweighted beach width since 1943. The total loss of beach area for all islands corresponds to 44% of the initial beach area. Variable shoreline trajectories suggest that changes in beach width on Takú Atoll are dependent on local control (that is, human activity and longshore sediment transport). Our results show that remote imagery with a low sampling frequency may be sufficient to characterize prominent morphological changes in planform beach configuration of reef islands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Decreases in seawater pH and carbonate saturation state (Omega) following the continuous increase in atmospheric CO2 represent a process termed ocean acidification, which is predicted to become a main threat to marine calcifiers in the near future. Segmented, tropical, marine green macro-algae of the genus Halimeda form a calcareous skeleton that involves biotically initiated and induced calcification processes influenced by cell physiology. As Halimeda is an important habitat provider and major carbonate sediment producer in tropical shallow areas, alterations of these processes due to ocean acidification may cause changes in the skeletal microstructure that have major consequences for the alga and its environment, but related knowledge is scarce. This study used scanning electron microscopy to examine changes of the CaCO3 segment microstructure of Halimedaopuntia specimens that had been exposed to artificially elevated seawater pCO2 of 650 µatm for 45 d. In spite of elevated seawater pCO2, the calcification of needles, located at the former utricle walls, was not reduced as frequent initiation of new needle-shaped crystals was observed. Abundance of the needles was 22 %/µm**2 higher and needle crystal dimensions 14 % longer. However, those needles were 42 % thinner compared with the control treatment. Moreover, lifetime cementation of the segments decreased under elevated seawater pCO2 due to a loss in micro-anhedral carbonate as indicated by significantly thinner calcified rims of central utricles (35-173 % compared with the control treatment). Decreased micro-anhedral carbonate suggests that seawater within the inter-utricular space becomes CaCO3 undersaturated (Omega < 1) during nighttime under conditions of elevated seawater pCO2, thereby favoring CaCO3 dissolution over micro-anhedral carbonate accretion. Less-cemented segments of H. opuntia may impair the environmental success of the alga, its carbonate sediment contribution, and the temporal storage of atmospheric CO2 within Halimeda-derived sediments.