122 resultados para traps


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare total and biogenic particle fluxes and stable nitrogen isotope ratios (d15N) at three mooring sites along a productivity gradient in the Canary Islands region with surface sediment accumulation rates and sedimentary d15N. Higher particle fluxes and sediment accumulation rates, and lower d15N were observed in the upwelling influenced eastern boundary region (EBC) compared to the oligotrophic sites north of Gran Canaria [European Station for Time-Series in the Ocean, Canary Islands (ESTOC]] and north of La Palma (LP). The impact of organic matter degradation and lateral particle advection on sediment accumulation was quantified with respect to the multi-year flux record at the ESTOC. Remineralisation of organic matter in the water column and at the sediment surface resulted in an organic carbon preservation of about 0.8% and total nitrogen preservation of about 0.4% of the estimated export production. Higher total and carbonate fluxes and accumulation rates in the lower traps and surface sediment compared to the upper traps indicated that at least 50% of the particulate matter at the ESTOC was derived from allochthonous sources. Low d15N values in the lower traps of the ESTOC and LP point to a source region influenced by coastal upwelling. We conclude from this study that the reconstruction of export production or nutrient regimes from sedimentary records in regions with strong productivity gradients might be biased due to the mixture of particles originating from autochthonous and allochthonous sources. This could result in an imprint of high productivity signatures on sedimentation processes in oligotrophic regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Asian monsoon system governs seasonality and fundamental environmental characteristics in the study area from which two distinct peculiarities are most notable: upwelling and convective mixing in the Arabian Sea and low surface salinity and stratification in the Bay of Bengal due to high riverine input and monsoonal precipitation. The respective oceanography sets the framework for nutrient availability and productivity. Upwelling ensures high nitrate concentration with temporal/spatial Si limitation; freshwater-induced stratification leads to reduced nitrogen input from the subsurface but Si enrichment in surface waters. Ultimately, both environments support high abundance of diatoms, which play a central role in the export of organic matter. It is speculated that, additional to eddy pumping, nitrogen fixation is a source of N in stratified waters and contributes to the low-d15N signal in sinking particles formed under riverine impact. Organic carbon fluxes are best correlated to opal but not to carbonate, which is explained by low foraminiferal carbonate fluxes within the river-impacted systems. This observation points to the necessity of differentiating between carbonate sources for carbon flux modeling. As evident from a compilation of previously published and new data on labile organic matter composition (amino acids and carbohydrates), organic matter fluxes are mainly driven by direct input from marine production, except the site off Pakistan where sedimentary input of (marine) organic matter is dominant during the NE monsoon. The explanation of apparently different organic carbon export efficiency calls for further investigations of, for example, food web structure and water column processes.